Cover image for Hydrogel Micro and Nanoparticles.
Hydrogel Micro and Nanoparticles.
Title:
Hydrogel Micro and Nanoparticles.
Author:
Lyon, L. Andrew.
ISBN:
9783527646449
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (465 pages)
Contents:
Hydrogel Micro and Nanoparticles -- Contents -- List of Contributors -- Foreword -- Preface -- 1 Thermally Sensitive Microgels: From Basic Science to Applications -- 1.1 Introduction -- 1.2 Theoretical Background -- 1.2.1 Thermodynamics of Volume Phase Transition -- 1.2.2 Internal Motion -- 1.2.3 Dynamics of Microgel -- 1.2.4 Kinetics Calculation of Reversible Aggregation -- 1.3 Basic Physics of Microgels -- 1.3.1 Volume Phase Transition -- 1.3.2 Internal Motion -- 1.3.2.1 Internal Motions in Good Solvent -- 1.3.2.2 Internal Motions in Θ and Poor Solvents -- 1.3.3 Dynamics of Cation-Induced Aggregation of Thermally Sensitive Microgels -- 1.3.3.1 Salt-Induced Complexation -- 1.3.3.2 Complexation Between Microgels and Protein -- 1.3.3.3 Aggregation of Spherical Microgels -- 1.3.4 Non-Ergodic and Ergodic Phenomena of Physical Crosslinked Gel -- 1.4 Applications -- 1.5 Conclusions -- References -- 2 Thermosensitive Core-Shell Microgels: Basic Concepts and Applications -- 2.1 Introduction -- 2.2 Volume Transition in Single Particles -- 2.3 Concentrated Suspensions: 3D Crystallization -- 2.4 Particles on Surfaces: 2D Crystallization -- 2.5 Concentrated Suspensions: Rheology -- 2.6 Core-Shell Particles as Carriers for Catalysts -- 2.6.1 Metal Nanoparticles -- 2.6.2 Enzymes -- 2.7 Conclusion -- References -- 3 Core-Shell Particles with a Temperature-Sensitive Shell -- 3.1 Introduction -- 3.2 Preparation of Core-Shell Particles with a Temperature- Sensitive Shell -- 3.2.1 Spontaneous Formation of the Core-Shell Structure via Emulsion Polymerization and Soap-Free Emulsion Polymerization -- 3.2.2 Formation of a Temperature-Sensitive Shell by Seeded Polymerization -- 3.3 Preparation of Hairy Particles with Temperature-Sensitive Hair -- 3.3.1 Hairy Particle Formation from Block Copolymer Micelles.

3.3.2 Hairy Particle Formation Through In Situ Formation of Surface Active Material -- 3.3.3 Hairy Particle Formation Through Hair Growth on Core Particles -- 3.3.3.1 Hairy Particle Formation Through Hair Growth on Rigid Core Particles -- 3.3.3.2 Hairy Particle Formation Through Hair Growth on Microgels -- 3.3.3.3 Graft Polymerization of NIPAM from a CMC Microgel Using the Ceric Ion Redox System -- 3.3.4 Hairy Particle Formation Through the Attachment of Hydrophilic Polymer Chains to the Surface of Core Particles (Grafting-to Method) -- 3.4 Properties, Functions and Applications of Core-Shell Particles with a Temperature-Sensitive Shell -- 3.4.1 Volume Phase Transition of the Temperature-Sensitive Shell and Accompanying Changes in Physical Properties of the Particles -- 3.4.2 Two-Dimensional Assembly of Hairy Particles and Optical Properties -- 3.4.3 Other 2D Assembly - Temperature-Sensitive Pickering Emulsion by PNIPAM Hairy Particles -- 3.4.4 Fluorescence Resonance Energy Transfer (FRET) Particles Tuned by Temperature -- 3.5 Conclusions -- References -- 4 pH-Responsive Nanogels: Synthesis and Physical Properties -- 4.1 Introduction -- 4.2 Preparation Techniques for pH-Responsive Nanogels -- 4.2.1 Emulsion Polymerization -- 4.2.2 Physical Self-Assembly of Interactive Polymers -- 4.3 Structural Properties of pH-Responsive Nanogels -- 4.3.1 Distribution of Crosslinking Monomers -- 4.3.2 Kinetic Modeling of Functional Group Distributions in Nanogels -- 4.4 Swelling of pH-Responsive Nanogels -- 4.4.1 Mechanism of pH-Responsive Swelling -- 4.4.2 Theory of Swelling and Elasticity of pH-Responsive Nanogels -- 4.4.3 Effect of Ionic Strength -- 4.5 Rheological Behavior of pH-Responsive Nanogels -- 4.6 Approach to Model pH-Responsive Nanogel Properties -- 4.7 Osmotic Compressibility of pH-Responsive Nanogels in Colloidal Suspensions.

4.8 Conclusions and Future Perspectives -- References -- 5 Poly(N-Vinylcaprolactam) Nano- and Microgels -- 5.1 Introduction -- 5.2 Poly(N-Vinylcaprolactam): Synthesis, Structure and Properties in Solution -- 5.3 Thermal Behavior of Poly(N-Vinylcaprolactam) in Water -- 5.4 PVCL Nano- and Microgels -- 5.4.1 Homopolymer PVCL Microgels -- 5.4.2 Copolymer PVCL Microgels -- 5.4.3 Composite and Hybrid Microgels -- 5.5 Conclusions -- References -- 6 Doubly Crosslinked Microgels -- 6.1 Introduction -- 6.1.1 Definitions and Classifications of SX and DX Microgels -- 6.1.2 A Brief History of Doubly Crosslinked Microgels -- 6.1.3 Stimulus-Responsive DX Microgels -- 6.1.4 General Equations Governing Hydrogel Swelling -- 6.1.5 General Equations Governing Hydrogel Mechanical Properties -- 6.2 Methods of Preparation -- 6.2.1 DX Microgel Aggregates -- 6.2.2 Microgel Crosslinked Hydrogels -- 6.2.3 Microgel-Reinforced Hydrogels -- 6.2.4 DX Microgel Crystals by Small Molecule Addition -- 6.2.5 Self-Crosslinked DX Microgel Crystals -- 6.2.6 Interpenetrating DX Microgels -- 6.3 Methods of Characterization -- 6.3.1 1H Nuclear Magnetic Resonance -- 6.3.2 Confocal Microscopy -- 6.3.3 Scanning Electron Microscopy -- 6.3.4 Swelling Experiments -- 6.3.5 Optical -- 6.3.6 Dynamic Rheology -- 6.3.7 Compression Modulus Measurements -- 6.3.8 Tensile Testing -- 6.4 Morphology -- 6.4.1 Morphology Types -- 6.4.2 Morphology Control -- 6.5 Properties -- 6.5.1 Swelling Properties of DX Microgels and Control -- 6.5.2 Optical Tuning -- 6.5.3 Mechanical Properties of DX Microgels and Control -- 6.5.4 Comparison of Properties with Microgels -- 6.5.5 Comparison of Properties with Conventional Hydrogels -- 6.6 Potential Applications -- 6.6.1 Photonic Applications -- 6.6.2 Biomedical Applications -- 6.7 Conclusion -- References.

7 ATRP: A Versatile Tool Toward Uniformly Crosslinked Hydrogels with Controlled Architecture and Multifunctionality -- 7.1 Incorporating Crosslinking Reactions into Controlled Radical Polymerization -- 7.2 Effect of Network Homogeneity on Thermoresponsive Hydrogel Performance -- 7.2.1 Performance of Macroscopic Hydrogels -- 7.2.2 Molecular Level Dehydration Kinetics -- 7.3 Gel Networks Containing Functionalized Nanopores -- 7.3.1 Enhanced Swelling Ratios -- 7.3.2 Accelerated Deswelling Kinetics -- 7.4 Toward Micro- and Nano-Sized Hydrogels by ATRP -- References -- 8 Nanogel Engineering by Associating Polymers for Biomedical Applications -- 8.1 Introduction -- 8.2 Preparation of Associating Polymer-Based Nanogels -- 8.2.1 Hydrophobically Modi.ed Polysaccharide -- 8.2.2 Photoresponsive Molecule-Modi.ed Polysaccharides -- 8.2.3 Thermoresponsive Polymer-Grafted Polysaccharide -- 8.2.4 Metal-Ligand Modified Polysaccharides -- 8.2.5 Siloxane-Modified Polysaccharides -- 8.2.6 Protein-Crosslinked Nanogels -- 8.3 Functions of Self-Assembled Nanogels -- 8.3.1 Nano-Encapsulation of Proteins by the Nanogel: Nanogels as Macromolecular Hosts -- 8.3.2 Artificial Molecular Chaperones -- 8.3.3 Nanogel Chaperones in Cell-Free Protein Synthesis -- 8.4 Application of Polysaccharide Nanogels to DDS -- 8.4.1 Protein Delivery -- 8.4.2 Nucleic Acid Delivery -- 8.5 Integration of Nanogels -- 8.6 Conclusion and Perspectives -- References -- 9 Microgels and Biological Interactions -- 9.1 An Introduction to Polymer Biomaterials -- 9.1.1 Hydrogels -- 9.1.2 Hydrogels as Particles -- 9.1.3 Hydrogel Particle Synthesis -- 9.2 Drug Delivery -- 9.2.1 Nanoparticles and the Mononuclear Phagocytic System -- 9.2.2 Nanoparticle Size and Surface Modi.cation for Enhanced Delivery -- 9.2.3 Nanogel Cellular Targeting -- 9.2.3.1 Passive Targeting: The Enhanced Permeability and Retention Effect.

9.2.3.2 Active Targeting: Nanoparticle Bioconjugation -- 9.2.4 Degradation and Release of Encapsulated Cargo -- 9.2.4.1 Release by Reduction -- 9.2.4.2 Release by pH Changes -- 9.3 Biomaterial Films -- 9.3.1 The Foreign Body Response -- 9.3.2 Hydrogels as a Biomaterial Interface -- 9.3.3 Antifouling Surfaces -- 9.3.4 Cellular Adhesion -- 9.3.5 Drug Release -- 9.4 Conclusion -- References -- 10 Oscillating Microgels Driven by Chemical Reactions -- 10.1 Introduction -- 10.2 Types of Oscillating Microgels -- 10.3 Synthesis and Fabrication of Oscillating Microgels -- 10.4 Control of Oscillatory Behavior -- 10.4.1 Effect on Induction Period -- 10.4.2 Effect on Oscillation Amplitude -- 10.4.3 Effect on Oscillation Period and Waveforms -- 10.5 Flocculating/Dispersing Oscillation -- 10.6 Concluding Remarks -- References -- 11 Smart Microgel/Nanoparticle Hybrids with Tunable Optical Properties -- 11.1 Introduction -- 11.2 Synthesis of Hybrid Gels -- 11.3 Characterization of Hybrid Gels -- 11.4 Hybrid Microgels with Plasmon Properties -- 11.5 Photoluminescent Hybrid Microgels -- 11.6 Summary -- References -- 12 Macroscopic Microgel Networks -- 12.1 Introduction and Motivation -- 12.2 Preparation of Microgel Networks -- 12.2.1 Networking Strategies -- 12.2.2 Direct Microgel Crosslinking -- 12.2.2.1 Hydrophobic Assembly -- 12.2.2.2 Ionic Assembly -- 12.2.2.3 Covalent Assembly -- 12.2.3 Microgel-Mediated Crosslinking -- 12.2.3.1 Initiator-Grafted Microgels -- 12.2.3.2 Surface-Polymerizable Microgels -- 12.2.3.3 Surface-Reactive Microgels -- 12.2.4 Physical Microgel Entrapment -- 12.2.4.1 Entrapment to Form 3D Hydrogels -- 12.2.4.2 Entrapment to Form 2D Films -- 12.3 Applications of Microgel Networks -- 12.3.1 Drug Delivery -- 12.3.2 Cell Adhesion-Directing Coatings -- 12.3.3 Tissue Engineering -- 12.3.4 Biosensors -- 12.3.5 Optical Materials.

12.3.6 Biomolecule Separation and Puri.cation.
Abstract:
The book provides experienced as well as young researchers with a topical view of the vibrant field of soft nanotechnology. In addition to elucidating the underlying concepts and principles that drive continued innovation, major parts of each chapter are devoted to detailed discussions of potential and already realized applications of micro- and nanogel- based materials. Examples of the diverse areas impacted by these materials are biocompatible coatings for implants, films for controlled drug release, self-healing soft materials and responsive hydrogels that react to varying pH conditions, temperature or light.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: