Cover image for Nonrelativistic Quantum X-Ray Physics.
Nonrelativistic Quantum X-Ray Physics.
Title:
Nonrelativistic Quantum X-Ray Physics.
Author:
Hau-Riege, Stefan P.
ISBN:
9783527664511
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (351 pages)
Contents:
Nonrelativistic Quantum X-Ray Physics -- Contents -- Preface -- Part I Introduction -- Chapter 1 Introduction -- 1.1 Motivation -- 1.2 Comparing X-Rays with Optical Radiation -- 1.3 Novel X-Ray Sources -- 1.4 Unit Systems -- 1.5 Overview of Lagrangian and Hamiltonian Mechanics -- 1.5.1 Lagrangian Mechanics -- 1.5.2 Hamiltonian Mechanics -- 1.6 Approximations -- 1.6.1 Semiclassical Approximation -- 1.6.2 Dipole Approximation -- Chapter 2 Review of Some Concepts in Quantum Mechanics -- 2.1 Introduction -- 2.2 Dirac's Bra-Ket (Bracket) Notation -- 2.3 Eigenvalues and Eigenfunctions -- 2.4 Functions of Operators -- 2.5 Point Particle in a Radially Symmetric Potential -- 2.5.1 Radial Schrödinger Equation -- 2.5.2 Bound States in a Modified Attractive Coulomb Potential -- 2.5.3 Unbound States in a Coulomb Potential -- 2.5.4 Pure Coulomb Potential -- 2.6 Mixed States -- 2.6.1 Isolated Systems -- 2.6.2 Coupled Systems -- 2.7 Schrödinger and Heisenberg Pictures of Quantum Mechanics -- 2.7.1 Evolution Operator in the Schrödinger Picture -- 2.7.1.1 Evolution of Pure States -- 2.7.1.2 Evolution of Mixed States -- 2.7.2 Equivalent Pictures of Quantum Mechanics -- 2.7.3 Schrödinger Picture -- 2.7.4 Heisenberg Picture -- 2.8 Representing Quantum Mechanics in Position and Momentum Space -- 2.9 Transition from Classical Mechanics to Quantum Mechanics -- 2.10 Molecular Orbital Approximation -- 2.10.1 Derivation of the Hartree-Fock Equations -- 2.10.1.1 Energy of the Slater Determinant -- 2.10.1.2 Energy Minimization of the Slater Determinant -- 2.10.2 Interpretation of Orbital Energies -- 2.10.2.1 Ionization Potential -- 2.10.2.2 Electron Affinity -- 2.10.3 Post-Hartree-Fock Methods -- PartII Quantization of the Free Electromagnetic Field -- Chapter 3 Classical Electromagnetic Fields -- 3.1 Introduction -- 3.2 Maxwell's Equations.

3.3 Electromagnetic Potentials -- 3.3.1 Field Equations -- 3.3.2 Gauge Transformation -- 3.3.3 Coulomb Gauge -- 3.3.4 Lorenz Gauge -- 3.4 Transverse and Longitudinal Maxwell's Equations -- 3.4.1 Helmholtz Decomposition of Maxwell's Equations -- 3.4.2 Decomposition of the Field Equations in the Coulomb Gauge -- 3.5 The Free Electromagnetic Field as a Sum of Mode Oscillators -- 3.5.1 Density of States of the Radiation Field -- 3.5.2 Radiation Cavity in Thermodynamic Equilibrium -- 3.5.2.1 Rayleigh - Jeans Radiation Law -- 3.5.2.2 Planck's Radiation Law -- 3.6 Charged Particle in an Electromagnetic Field and the Minimal-Coupling Hamiltonian -- Chapter 4 Harmonic Oscillator -- 4.1 Introduction -- 4.2 Classical Harmonic Oscillator with One Degree of Freedom -- 4.3 Quantum Mechanical Harmonic Oscillator -- 4.4 N-Dimensional Quantum Mechanical Harmonic Oscillator -- Chapter 5 Quantization of the Electromagnetic Field -- 5.1 Introduction -- 5.2 Transition to a Quantum Mechanical Description -- 5.3 Photon Number States (Fock States) -- 5.4 Photons -- 5.4.1 Photon Momentum and Poynting Vector -- Chapter 6 Continuous Fock Space -- 6.1 Introduction -- 6.2 Three-Dimensional Continuum Field -- 6.2.1 Number States in the Continuum Field -- 6.2.1.1 Vacuum State -- 6.2.1.2 One-Photon States -- 6.2.1.3 Single-Mode Multiple-Photon States -- 6.2.1.4 Multimode States -- 6.3 One-Dimensional Treatment -- 6.3.1 Intensity -- 6.3.2 Description in the Time Domain -- Chapter 7 Coherence -- 7.1 Introdcution -- 7.2 Review of Classical Coherence Theory -- 7.2.1 First-Order Coherence -- 7.2.2 Second-Order Coherence -- 7.2.3 Chaotic Light -- 7.2.3.1 First-Order Coherence of SASE FELs -- 7.2.3.2 Second-Order Coherence of SASE FELs -- 7.3 Quantum Coherence Theory.

7.3.1 Coincidence Detection Using an Ideal Photon Detector -- 7.3.2 Field Correlations -- 7.3.3 Coherence -- Chapter 8 Examples for Electromagnetic States -- 8.1 Introduction -- 8.2 Quantum Phase of Radiation Fields -- 8.2.1 Dirac's Phase Operator -- 8.2.2 Quantum Sine and Cosine Operators -- 8.2.3 Phase State Projectors -- 8.3 Single-Mode States -- 8.3.1 Pure Single-Mode States -- 8.3.2 Statistical Mixtures of Single-Mode States -- 8.3.2.1 Thermally Excited States -- 8.3.3 Coherent States -- 8.4 Multimode States -- 8.4.1 Multimode Fock States -- 8.4.2 Multimode Coherent States -- 8.4.3 Localized Radiation (Wave Packets Describing Localized Photons) -- 8.4.3.1 Gaussian Wave Packets -- 8.4.4 Chaotic Light -- 8.4.4.1 Thermally Excited Multimode States -- 8.5 One-Dimensional Continuum Mode States -- PartIII Interaction of X-Rays with Matter -- Chapter 9 Interaction of the Electromagnetic Field with Matter -- 9.1 Introdution -- 9.2 Tensor Product of Matter and Radiation Hilbert Spaces -- 9.3 Interaction Hamiltonian for the Electromagnetic Field and Matter -- Chapter 10 Time-Dependent Perturbation Theory -- 10.1 Introduction -- 10.2 Interaction Picture -- 10.2.1 Pure States -- 10.2.2 Mixed States -- 10.3 Transition Probabilities -- 10.3.1 Time Dependence of Perturbations -- 10.3.2 Transition Probabilities -- 10.3.2.1 Pure States -- 10.3.2.2 Mixed States -- 10.4 Perturbative Expansion of Transition Amplitudes -- 10.4.1 Transition Amplitude in First Order -- 10.4.2 Transition Amplitude in Second Order -- 10.4.3 Transition Between Discrete States -- 10.4.4 Transition from Discrete to Continuous States -- 10.4.4.1 Example: Free Particle -- 10.4.5 Transition Between Continuous States -- 10.4.6 Scattering (Ŝ) and Transition (T) Matrices -- 10.5 Time-Dependent Perturbation Theory for Mixed States -- 10.5.1 Isolated System.

10.5.2 Coupled Systems -- Chapter 11 Application of Perturbation Theory to the Interaction of Electromagnetic Fields with Matter -- 11.1 Introduction -- 11.2 Feynman Diagrams -- 11.3 Mixed States -- 11.3.1 Transition Probabilities -- PartIV Applications of X-Ray-Matter-Interaction Theory -- Chapter 12 X-Ray Scattering by Free Electrons -- 12.1 Introduction -- 12.2 Energy and Momentum Conservation -- 12.2.1 Scattering of Photons by Free Electrons -- 12.2.2 A Free Electron Cannot Absorb a Photon -- 12.3 Scattering Cross Section -- 12.4 Scattering From an Electron at Rest -- 12.4.1 Kinematics -- 12.4.2 Nonrelativistic Scattering Cross Section -- 12.4.3 Polarization -- 12.4.4 Relativistic Klein-Nishima Cross Section -- 12.5 Doppler Effect -- Chapter 13 Radiative Atomic Bound - Bound Transitions -- 13.1 Introduction -- 13.2 Emission of Photons -- 13.3 Lifetime and Natural Line Width -- 13.3.1 Weisskopf - Wigner Theory -- 13.3.2 Frequency Spectrum -- 13.3.3 Breit - Wigner Procedure -- 13.4 Absorption of Photons -- 13.5 Einstein's A and B Coefficients -- 13.6 Radiative Atomic Bound - Bound Transitions in Mixed States -- Chapter 14 One-Photon Photoionization -- 14.1 Introduction -- 14.2 Photoionization in a Pure-State Radiation Field -- 14.3 Photoionization in a Mixed-State Radiation Field -- 14.4 Single-Electron Approximation for Photoionization -- 14.5 Photoionization of Hydrogen-Like Atoms -- 14.5.1 Large Photon Energies -- 14.5.2 Small Photon Energies -- 14.5.3 Comparing Small and Large Photon Energies -- Chapter 15 Bremsstrahlung -- 15.1 Introduction -- 15.2 Electron - Nucleus Bremsstrahlung -- 15.3 Electron - Positron Bremsstrahlung -- 15.4 Electron - Electron Bremsstrahlung -- 15.4.1 Quadrupole Nature of Bremsstrahlung -- 15.4.2 Indistinguishable Particles -- 15.5 Inverse Bremsstrahlung Absorption.

Chapter 16 X-Ray Scattering -- 16.1 Introduction -- 16.2 Steady-State Scattering Formalism -- 16.2.1 Dipole Approximation -- 16.3 Elastic Scattering (Rayleigh Scattering) -- 16.3.1 Elastic Scattering for Large X-Ray Energies -- 16.3.2 Elastic Scattering for Intermediate X-Ray Energies -- 16.4 Raman Scattering -- 16.5 Compton Scattering -- 16.5.1 Nonresonant Compton Scattering -- 16.5.2 Resonant Raman-Compton Scattering -- 16.5.3 Infrared Divergence for Soft Scattered Photon Energies -- 16.6 Single-Electron Approximation for X-Ray Scattering -- 16.7 Short-Pulse Scattering -- 16.7.1 General Formalism -- 16.7.2 Plane-Parallel Light Pulse -- 16.7.3 Coherent Pulses -- Chapter 17 Relaxation Processes -- 17.1 Introduction -- 17.2 Auger Decay -- 17.2.1 Eigenstates Due to Coupling of a Discrete Level to a Continuum -- 17.2.1.1 Decay Rate -- 17.2.2 Autoionization in First-Order Perturbation Theory -- 17.2.2.1 Wentzel Treatment of the Auger Effect -- 17.2.2.2 Estimate for the Auger Rates -- 17.3 X-Ray Fluorescence following Photoionization -- 17.4 Branching Ratio -- Chapter 18 Multiphoton Photoionization -- 18.1 Introduction -- 18.2 Above-Threshold Ionization -- 18.3 Sequential Two-Photon Absorption -- Chapter 19 Threshold Phenomena -- 19.1 Introduction -- 19.2 One-Step Treatment of Threshold Excitations -- 19.3 Nonradiative Threshold Processes -- 19.3.1 Shake-Modified Resonant Autoionization -- 19.3.2 Post-Collision Interaction -- References -- Index -- EULA.
Abstract:
Providing a solid theoretical background in photon-matter interaction, Nonrelativistic Quantum X-Ray Physics enables readers to understand experiments performed at XFEL-facilities and x-ray synchrotrons. As a result, after reading this book, scientists and students will be able to outline and perform calculations of some important x-ray-matter interaction processes. Key features of the contents are that the scope reaches beyond the dipole approximation when necessary and that it includes short-pulse interactions. To aid the reader in this transition, some relevant examples are discussed in detail, while non-relativistic quantum electrodynamics help readers to obtain an in-depth understanding of the formalisms and processes. The text presupposes a basic (undergraduate-level) understanding of mechanics, electrodynamics, and quantum mechanics. However, more specialized concepts in these fields are introduced and the reader is directed to appropriate references. While primarily benefiting users of x-ray light-sources, the material is equally of relevance to researchers in various disciplines, such as life sciences, biology, materials science, physics, and chemistry that plan on applying these new facilities in their respective fields.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: