Cover image for Theoretical Geochemistry : Applications of Quantum Mechanics in the Earth and Mineral Sciences.
Theoretical Geochemistry : Applications of Quantum Mechanics in the Earth and Mineral Sciences.
Title:
Theoretical Geochemistry : Applications of Quantum Mechanics in the Earth and Mineral Sciences.
Author:
Tossell, John A.
ISBN:
9780195364569
Personal Author:
Physical Description:
1 online resource (529 pages)
Contents:
CONTENTS -- 1. INTRODUCTION -- 1.1 Historical perspective-ionic and atomistic approaches -- 1.2 Crystal-field theory and the geochemistry of the transition metals -- 1.3 Quantum chemistry -- 1.4 Solid-state quantum physics (band theory and related approaches) -- 1.5 Quantum geochemistry -- 1.6 Models and methods -- 2. EXPERIMENTAL METHODS -- 2.1 Diffraction effects -- 2.1.1 X-ray diffraction -- 2.1.2 Neutron diffraction -- 2.1.3 Electron diffraction and associated phenomena -- 2.2 Electron and x-ray spectroscopy -- 2.2.1 Photoelectron spectroscopy (and Auger electron spectroscopy) -- 2.2.2 X-ray emission spectroscopy -- 2.2.3 X-ray absorption spectroscopy (including EXAFS and XANES) -- 2.3 Optical (uv-visible-near-ir) spectroscopy -- 2.3.1 Electronic (optical) absorption spectroscopy -- 2.3.2 Reflectance (diffuse and specular) spectroscopy -- 2.4 Vibrational spectroscopy -- 2.4.1 Theoretical basis -- 2.4.2 Infrared spectroscopy -- 2.4.3 Raman spectroscopy -- 2.4.4 Reporting of data -- 2.5 Nuclear spectroscopy -- 2.5.1 Nuclear quadrupole resonance -- 2.5.2 Nuclear magnetic resonance -- 2.5.3 The Mössbauer effect -- 2.6 Other methods -- 2.6.1 Electron spin resonance -- 2.7 Concluding remarks -- 3. THEORETICAL METHODS -- 3.1 Elements of quantum mechanics -- 3.2 Details of Hartree-Fock-Roothaan calculations: Choice of basis set -- 3.2.1 Minimum basis sets -- 3.2.2 Extended basis sets: Double-ζ bases -- 3.2.3 Extended basis sets: Polarized bases -- 3.2.4 Extended basis sets: Other approaches -- 3.2.5 Basis set and calculated properties -- 3.3 Improvements on the Hartree-Fock wave function -- 3.4 Dependence of computation time on basis-set size (and property calculated) for Hartree-Fock-Roothaan and configuration-interaction calculations -- 3.5 Prediction of properties other than equilibrium geometries from Hartree-Fock-Roothaan calculations.

3.6 Evaluation of spectral and other experimental parameters using Hartree-Fock-Roothaan calculations -- 3.7 Approximate Hartree-Fock methods -- 3.8 Hartree-Fock band-structure calculations -- 3.9 Elements of density-functional theory -- 3.10 The multiple-scattering or scattered-wave X-α method -- 3.11 Density-functional band theory -- 3.12 Theoretical ionic models-the modified electron-gas approach -- 3.13 Simulation methods -- 3.14 Combined local-density-functional molecular dynamics approach -- 3.15 Relationships between localized and delocalized approaches -- 3.15.1 Orbital and band energies -- 3.15.2 Incorporation of external atoms of the solid into cluster calculations -- 3.16 Concluding remarks on different theoretical approaches -- 4. APPLICATION OF QUANTUM-MECHANICAL METHODS TO SIMPLE INORGANIC "MOLECULES" OF RELEVANCE TO MINERALOGY, AND TO OXIDE MINERALS -- 4.1 The inorganic molecules SiO, SiO[sub(2)], Si[sub(2)]O[sub(2)], and Si[sub(3)]O[sub(3)] -- 4.2 The SiF[sub(4)] molecule -- 4.2.1 Geometric structure of SiF[sub(4)] -- 4.2.2 Electronic structure of SiF[sub(4)] - electron spectroscopy -- 4.2.3 Electronic structure of SiF[sub(4)] - x-ray-absorption spectra -- 4.2.4 Electronic structure of SiF[sub(4)] - [sup(29)]Si NMR spectra -- 4.3 Major oxide minerals -- 4.3.1 MgO (periclase) -- 4.3.2 Al[sub(2)]O[sub(3)] (corundum) -- 4.3.3 SiO[sub(2)] [silica polymorphs -- also Si(OH)[sub(4)], SiO[sub(4)] [sup(-4)], (SiH[sub(3)])[sub(2)]O, and (OH)[sub(3)]SiOSi(OH)[sub(3)]] -- 4.4 Transition-metal oxides -- 4.4.1 Titanium oxides -- 4.4.2 Manganese oxides -- 4.4.3 Iron oxides (and hydroxides) -- 4.4.4 Complex oxides -- 4.4.5 Band theory and the transition-metal monoxides -- 4.5 Calculation of Mössbauer parameters in iron oxides (and other iron compounds) -- 5. APPLICATIONS TO SILICATE, CARBONATE, AND BORATE MINERALS AND RELATED SPECIES.

5.1 Introduction -- 5.2 Silicates -- 5.2.1 Olivines: Geometric structures -- 5.2.2 Olivines: Electronic structures -- 5.2.3 Element distributions and solid solutions in olivines -- 5.2.4 Structure and stability of silicates of intermediate polymerization -- 5.2.5 Electronic structures of silicates other than olivines and SiO[sub(2)] -- 5.3 Carbonates -- 5.3.1 Carbonates: Geometric structures -- 5.3.2 Carbonates: Electronic structures and properties -- 5.4 Borates -- 5.4.1 B[sub(2)]O[sub(3)] and the borates: Geometric structures -- 5.4.2 B[sub(2)]O[sub(3)] and the borates: Spectra and electronic structures -- 6. APPLICATION OF BONDING MODELS TO SULFIDE MINERALS -- 6.1 Introduction -- 6.2 Sphalerite, würtzite, and related phases [ZnS, CdS, HgS, (Zn,Fe)S] -- 6.3 Galena (PbS) and the isostructural selenide and telluride minerals (PbSe, PbTe) -- 6.4 Pyrite (FeS[sub(2)]), pyrrhotite (Fe[sub(1-x)]S), and related phases (CoS[sub(2)], NiS[sub(2)], CuS[sub(2)], ZnS[sub(2)] -- CoS, NiS) -- 6.5 Marcasite (FeS[sub(2)]), arsenopyrite (FeAsS), loellingite (FeAs[sub(2)]), and related minerals -- 6.6 Copper, copper-iron, and related sulfides (Cu[sub(2)]S, CuS, CuFeS[sub(2)], Cu[sub(5)]FeS[sub(4)], Ag[sub(2)]S) -- 6.7 The thiospinels [Co[sub(3)]S[sub(4)], CuCo[sub(2)]S[sub(4)], (Co,Ni)[sub(3)]S[sub(4)], Ni[sub(3)]S[sub(4)], FeNi[sub(2)]S[sub(4)], FeCr[sub(2)]S[sub(4)]] -- 6.8 Other (including complex) sulfides [MoS[sub(2)], Co[sub(9)]S[sub(8)], (Ni,Fe)[sub(9)]S[sub(8)], Cu[sub(12)]Sb[sub(4)]S[sub(13)], etc.] -- 6.9 Concluding remarks -- 7. APPLICATIONS IN MINERAL PHYSICS AND CHEMISTRY -- 7.1 Structure, bonding, and stereochemistry -- 7.1.1 Covalency and ionicity in solids from calculation and experiment -- 7.1.2 Calculation of geometric structures and their (phase) relations: The example of the SiO[sub(2)] polymorphs -- 7.1.3 Pauling's rules reinterpreted.

7.1.4 Qualitative molecular-orbital theory and its applications -- 7.2 Minerals at elevated pressures and the interior of the Earth -- 7.2.1 Olivine and Mg[sub(2)]SiO[sub(4)] spinel -- 7.2.2 MgSiO[sub(3)]and CaSiO[sub(3)] perovskite -- 7.2.3 Simple oxides, structural and electronic phase transitions -- 7.2.4 Iron (and Fe-rich alloys) at core pressures -- 7.3 Industrial mineral materials -- 7.3.1 Zeolites -- 7.3.2 Transition-metal sulfide catalysts -- 7.4 Concluding remarks -- 8. APPLICATIONS TO GEOCHEMICAL PROBLEMS -- 8.1 The nature of melts, glasses, and crystal-melt equilibria -- 8.1.1 Silica glass and melt -- 8.1.2 Glasses and melts of more complex compositions -- 8.1.3 Crystal-melt equilibria -- 8.2 Solution species -- 8.2.1 Quantum-mechanical studies of water and aqueous (ionic) solutions -- 8.2.2 Aqueous metal complexes, hydrothermal solutions, and hydrothermal ore deposits -- 8.2.3 Theoretical studies on Zn chloride complexes in aqueous solution -- 8.3 Mineral surfaces -- 8.3.1 The surface of MgO (periclase) -- 8.3.2 The surface of TiO[sub(2)] (rutile) -- 8.3.3 Oxide surface defects and the reactivity of surfaces -- 8.3.4 The surface of ZnS (sphalerite) -- 8.3.5 The surface of Cu[sub(5)]FeS[sub(4)] (bornite) and atmospheric tarnishing -- 8.3.6 Concluding remarks on surface studies -- 8.4 Geochemical distribution of the elements -- 8.4.1 The Goldschmidt classification: Ionic and orbital interpretations -- 8.4.2 Lithophile versus chalcophile behavior: The M-O versus the M-S bond -- 8.4.3 Geochemical coherence and geochemical differentiation -- 9. THE FUTURE -- 9.1 Capabilities of quantum-mechanical methods -- 9.2 Future areas of application in structures and energetics -- 9.3 Future applications in mineral spectroscopy -- 9.4 New areas of application -- 9.5 Research directions.

9.6 Epilog: Theoretical geochemistry and the Earth and environmental sciences -- APPENDIX A: Symbols, units, conversion factors, and constants -- APPENDIX B: Experimental methods for obtaining information on structure and bonding -- APPENDIX C: Quantum-mechanical (and related) calculational methods and terminology -- REFERENCES -- INDEX -- A -- B -- C -- D -- E -- F -- G -- H -- I -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- W -- X -- Z.
Abstract:
1. Introduction2. Experimental Methods3. Theoretical Methods4. Application of Quantum Mechanical Methods to Simple Inorganic "Molecules" of Relevance to Mineralogy and to Oxide Minerals5. Applications to Silicate, Carbonate, and Borate Minerals and Related Species6. Applications of Bonding Models to Sulfide Minerals7. Applications in Mineral Physics and Chemistry8. Applications to Geochemical Problems9. The Future.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: