Cover image for Atomic Physics in Hot Plasmas.
Atomic Physics in Hot Plasmas.
Title:
Atomic Physics in Hot Plasmas.
Author:
Salzmann, David.
ISBN:
9780195355154
Personal Author:
Physical Description:
1 online resource (272 pages)
Series:
International Series of Monographs on Physics ; v.97

International Series of Monographs on Physics
Contents:
Contents -- 1 Introductory Remarks, Notations, and Units -- 1.1 The scope of this book -- 1.2 The basic plasma parameters -- 1.3 Statistics, temperature, velocity, and energy distributions -- 1.4 Variations in space and time -- 1.5 Units -- 2 Modeling of the Atomic Potential in Hot Plasmas -- 2.1 General properties of the models -- 2.2 The Debye-Hückel theory -- 2.3 The plasma coupling constant -- 2.4 The Thomas-Fermi statistical model -- 2.5 Ion sphere models -- 2.6 Ion correlation models -- 2.7 Statistical theories -- 3 Atomic Properties in Hot Plasmas -- 3.1 A few introductory remarks -- 3.2 Atomic level shifts and continuum lowering -- 3.3 Continuum lowering in weakly coupled plasmas -- 3.4 The partition function -- 3.5 Line shift in plasmas -- 4 Atomic Processes in Hot Plasmas -- 4.1 Classification of the atomic processes -- 4.2 Definitions and general behavior -- 4.3 The detailed balance principle -- 4.4 Atomic energy levels -- 4.5 Atomic transition probabilities -- 4.6 Electron impact excitation and deexcitation -- 4.7 Electron impact ionization and three-body recombination -- 4.8 Photoionization and radiative recombination -- 4.9 Autoionization and dielectronic recombination -- 5 Population Distributions -- 5.1 General description -- 5.2 Local Thermodynamic Equilibrium -- 5.3 Corona Equilibrium -- 5.4 The Collisional Radiative Steady State -- 5.5 Low density plasmas -- 5.6 The average atom model -- 5.7 Validity conditions for LTE and CE -- 5.8 A remark on the dependence of the sensitivity of the CRSS calculations on the accuracy of the rate coefficients -- 5.9 Time-dependent models -- 6 The Emission Spectrum -- 6.1 The continuous spectrum -- 6.2 The line spectrum-isolated lines -- 6.3 Satellites -- 6.4 Unresolved Transition Arrays (UTAs) -- 6.5 Super transition arrays (STAs) -- 7 Line Broadening -- 7.1 Introduction.

7.2 What is line broadening? -- 7.3 Natural line broadening -- 7.4 Doppler broadening -- 7.5 Electron impact broadening -- 7.6 Quasi-static Stark broadening -- 7.7 Line broadening: Lyman series -- 8 Experimental Considerations: Plasma Diagnostics -- 8.1 Measurements of the continuous spectrum -- 8.2 Measurements of the line spectrum -- 8.3 Space-resolved plasma diagnostics -- 8.4 Time-resolved spectra -- 8.5 The line width -- 9 The Absorption Spectrum and Radiation Transport -- 9.1 Basic definitions of the radiation field -- 9.2 The radiation field in thermodynamic equilibrium: the black body radiation -- 9.3 Absorption of photons by a material medium -- 9.4 The continuous photoabsorption cross section -- 9.5 The line photoabsorption cross section -- 9.6 The basic radiation transport equation -- 9.7 Radiation transport in plasmas: examples -- 9.8 Diffusion approximation, radiative heat conduction, and Rosseland mean free path -- 10 Applications -- 10.1 X-ray lasers -- 10.2 Applications of high intensity X-ray sources -- References -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- X.
Abstract:
1. Introductory Remarks, Notations, and Units2. Modeling of the Atomic Potential in Hot Plasmas3. Atomic Properties in Hot Plasmas4. Atomic Processes in Hot Plasmas5. Population Distributions6. The Emission Spectrum7. Line Broadening8. Experimental Considerations: Plasma Diagnostics9. The Absorption Spectrum and Radiation Transport10. Applications.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: