Cover image for Solution Processing of Inorganic Materials.
Solution Processing of Inorganic Materials.
Title:
Solution Processing of Inorganic Materials.
Author:
Mitzi, David.
ISBN:
9780470407615
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (522 pages)
Contents:
SOLUTION PROCESSING OF INORGANIC MATERIALS -- CONTENTS -- Preface -- Contributors -- 1. Introduction to Solution-Deposited Inorganic Electronics -- 1.1 Background and Motivation -- 1.1.1 Electronics Technologies -- 1.1.2 Commercial Macroelectronic Technology -- 1.1.3 Macroelectronics Potential -- 1.2 Importance of Solution Processing -- 1.3 Application Challenges: TFT Devices and Circuits -- 1.3.1 TFT Device Fundamentals -- 1.3.2 Next-Generation TFTs -- 1.3.3 Technology for RF TFTs -- 1.3.4 Exploratory TFT Concepts -- 1.3.5 Technology Computer Aided Design for TFTs -- 1.4 Application Challenges: Optoelectronics -- 1.4.1 Photovoltaics -- 1.4.2 Transparent Conductive Oxides -- 1.4.3 Transparent Transistors -- 1.4.4 Light-Emitting Diodes -- 1.4.5 Solid-State Lighting -- 1.4.6 Si-Based Integrated Emitters -- 1.5 Application Challenges: Power Sources, Sensors, and Actuators -- 1.6 Conclusions -- References -- 2. Chemical Solution Deposition-Basic Principles -- 2.1 Introduction -- 2.2 Substrate Surface Preparation -- 2.3 Starting Reagents and Solvents -- 2.3.1 Background -- 2.3.2 Starting Reagents -- 2.3.3 Solvents -- 2.4 Precursor Solution Preparation and Characteristics -- 2.4.1 Background -- 2.4.2 Sol-Gel Processes -- 2.4.3 Chelate Processes -- 2.4.4 MOD Solution Synthesis -- 2.4.5 Solution Preparation Summary -- 2.4.6 Other Processing Routes -- 2.5 Film Formation Behavior -- 2.5.1 Background -- 2.5.2 Spin Coating -- 2.5.3 Dip Coating -- 2.5.4 Spray Coating -- 2.5.5 Stamping and Microcontact Printing -- 2.6 Structural Evolution: Film Formation, Densification, and Crystallization -- 2.6.1 Background -- 2.6.2 Film Formation -- 2.6.3 Densification and Crystallization -- 2.7 Summary -- References -- 3. Solution Processing of Chalcogenide Semiconductors via Dimensional Reduction -- 3.1 Introduction -- 3.2 Dimensional Reduction.

3.3 Hydrazine Precursor Route -- 3.3.1 SnSe(2-x)S(x) Films -- 3.3.2 In(2)Se(3) Films -- 3.3.3 CuInTe(2), CuInSe(2), and Cu(Ga(1-x)In(x))Se(2) Films -- 3.3.4 Cu(2)S Precursor -- 3.3.5 KSb(5)S(8) Films -- 3.3.6 Other Metal Chalcogenide Systems -- 3.4 Similar Approaches without Hydrazine -- 3.5 Future Prospects -- References -- 4. Oxide Dielectric Films for Active Electronics -- 4.1 Introduction -- 4.2 Gate Dielectric Materials Selection -- 4.3 Producing High-Quality Films from Solution -- 4.4 HafSOx Thin-Film Dielectrics -- 4.5 AlPO Thin-Film Dielectric -- 4.6 Compositionally Graded and Laminated Structures -- 4.7 Summary and Perspective -- References -- 5. Liquid Silicon Materials -- 5.1 Introduction -- 5.2 Liquid Silicon Material -- 5.3 Forming Silicon Films from the Liquid Silicon Materials -- 5.4 Fabrication of a TFT Using a Solution-Processed Silicon Film -- 5.5 Fabrication of TFT Using Inkjet-Printed Silicon Film -- 5.6 Forming SiO(2) Films from the Liquid Silicon Materials -- 5.7 LTPS Fabrication Using Solution-Processed SiO(2) Films -- 5.8 Forming Doped Silicon Films -- 5.9 Conclusions -- Acknowledgments -- References -- 6. Spray CVD of Single-Source Precursors for Chalcopyrite I-III-VI(2) Thin-Film Materials -- 6.1 Introduction -- 6.2 Single-Source Precursor Studies -- 6.2.1 Background -- 6.2.2 Chemical Synthesis of SSPs -- 6.2.3 Thermal Analysis and Characterization of SSPs -- 6.2.4 Preparation of I-III-VI(2) Powders from SSPs -- 6.3 Spray or Atmosphere-Assisted CVD Processing -- 6.3.1 AACVD Reactor Design -- 6.3.2 Preliminary Thin-Film Deposition Studies -- 6.3.3 Impact of Reactor Design on CuInS(2) Film Growth -- 6.4 Atmospheric Pressure Hot-Wall Reactor Parametric Study -- 6.4.1 Parametric Study Approach -- 6.4.2 Variation of Deposition Temperature -- 6.4.3 Variation of Susceptor Location and Precursor Concentration.

6.4.4 Postdeposition Annealing -- 6.4.5 Photoluminescence Studies -- 6.5 Fabrication and Testing of CIS Solar Cells -- 6.5.1 Cell Fabrication at GRC -- 6.5.2 Cross-Fabrication of Solar Cells -- 6.5.3 Solar Cell Characterization -- 6.6 Concluding Remarks -- 6.6.1 Summary -- 6.6.2 Outlook and Future Work -- Acknowledgments -- References -- 7. Chemical Bath Deposition, Electrodeposition, and Electroless Deposition of Semiconductors, Superconductors, and Oxide Materials -- 7.1 Introduction -- 7.2 Chemical Bath Deposition -- 7.2.1 CdS Deposition -- 7.2.2 ZnS(O,OH) Deposition -- 7.2.3 Cd(1-x)Zn(x)S Deposition -- 7.2.4 Other Systems -- 7.3 Deposition of CIGS by Electrodeposition and Electroless Deposition -- 7.3.1 Electrodeposition of CIGS -- 7.3.2 Electroless Deposition of CIGS -- 7.4 Electrodeposition of Oxide Superconductors -- 7.4.1 Electrodeposition of Tl-Bi-Sr-Ba-Ca-Cu-O -- 7.4.2 Electrodeposition of Bi-Sr-Ca-Cu-O -- 7.5 Electrodeposition of Cerium Oxide Films -- 7.6 Electrodeposition of Gd(2)Zr(2)O(7) -- References -- 8. Successive Ionic Layer Adsorption and Reaction (SILAR) and Related Sequential Solution-Phase Deposition Techniques -- 8.1 Introduction -- 8.2 SILAR -- 8.2.1 Basic Principles of SILAR -- 8.2.2 Advantages and Disadvantages of SILAR -- 8.2.3 SILAR Deposition Equipment -- 8.2.4 Mechanism of Film Growth in SILAR -- 8.3 Materials Grown by SILAR -- 8.3.1 Oxide Films -- 8.3.2 Chalcogenide Films -- 8.3.3 Films of Metals and Other Materials -- 8.4 ILGAR -- 8.4.1 Basic Principles of ILGAR -- 8.4.2 Materials Grown by ILGAR -- 8.5 ECALE -- 8.5.1 Basic Principles of ECALE -- 8.5.2 Materials Grown by ECALE -- 8.6 Other Sequential Solution-Phase Deposition Techniques -- References -- 9. Evaporation-Induced Self-Assembly for the Preparation of Porous Metal Oxide Films -- 9.1 Introduction -- 9.2 The EISA Process.

9.3 Characterization of Self-Assembled Films -- 9.3.1 Positron Annihilation Lifetime Spectroscopy (PALS) -- 9.3.2 Gas Physisorption -- 9.3.3 Small-Angle X-Ray Scattering (SAXS) -- 9.4 Generation of Mesoporous Crystalline Metal Oxide Films Via Evaporation-Induced Self-Assembly -- 9.5 Electronic Applications -- 9.5.1 Mesoporous Films with Insulating Framework -- 9.5.2 Mesoporous Films with a Semiconducting Framework -- 9.6 Mesoporous Films in Dye-Sensitized Solar Cells -- 9.7 Conclusions -- References -- 10. Engineered Nanomaterials as Soluble Precursors for Inorganic Films -- 10.1 Introduction -- 10.2 Synthesis of Inorganic Nanomaterials -- 10.3 Nanoparticles as Soluble Building Blocks for Inorganic Films -- 10.3.1 Sintering Metal and Semiconductor Nanoparticles into Continuous Polycrystalline Films -- 10.3.2 Electronic Materials Based on Nanoparticle Assemblies -- 10.3.3 Multicomponent Nanoparticle Assemblies -- 10.4 Films and Arrays of Inorganic Nanowires -- 10.5 Applications Using Networks and Arrays of Carbon Nanotubes -- 10.6 Concluding Remarks -- Acknowledgments -- References -- 11. Functional Structures Assembled from Nanoscale Building Blocks -- 11.1 Introduction -- 11.2 Building Blocks: Synthesis and Properties -- 11.3 Hierarchical Assembly of Nanowires -- 11.3.1 Fluidic Flow-Directed Assembly -- 11.3.2 Langmuir-Blodgett Technique-Assisted NW Assembly -- 11.4 Nanowire Electronics and Optoelectronics -- 11.4.1 Crossed Nanowire Devices -- 11.4.2 Nanoscale Logic Gates and Computational Circuits -- 11.4.3 Nanoscale Optoelectronics -- 11.5 Nanowire Thin-Film Electronics-Concept and Performance -- 11.5.1 p-Si Nanowire Thin-Film Transistors -- 11.5.2 High-Speed Integrated Si NW-TFT Circuits -- 11.5.3 3D Integrated Functional Electronic System -- 11.6 Summary and Perspective -- References -- 12. Patterning Techniques for Solution Deposition.

12.1 Introduction -- 12.2 Opportunities for Printable Inorganic verses Organic Materials Systems -- 12.3 Printing and the Microelectronics Industry-Present and Future -- 12.4 Printed Electronics Value Chain -- 12.5 Electrically Functional Inks -- 12.6 Printing Technologies -- 12.6.1 Contact Printing -- 12.6.2 Noncontact Printing-Ink Jet -- 12.6.3 Functional Inks for Ink Jet -- 12.7 Structure of a Printed Transistor -- 12.8 Patterning Techniques for Solution Deposition: Technology Diffusion -- 12.8.1 Standards -- 12.8.2 Awareness -- 12.8.3 Roadmapping for Supply Chain Development -- 12.8.4 Quality Control/Assurance -- 12.9 Conclusions -- References -- 13. Transfer Printing Techniques and Inorganic Single-Crystalline Materials for Flexible and Stretchable Electronics -- 13.1 Introduction -- 13.2 Inorganic Single-Crystalline Semiconductor Materials for Flexible Electronics -- 13.3 Transfer Printing Using an Elastomer Stamp -- 13.3.1 Surface Chemistry -- 13.3.2 Thin-Film Adhesives -- 13.3.3 Kinetic Effects -- 13.3.4 Stress Concentration and Fracture -- 13.3.5 Carrier Films and Carbon Nanotubes -- 13.3.6 Machines for Transfer Printing -- 13.4 Flexible Thin-Film Transistors that Use µs-Sc on Plastic -- 13.5 Integrated Circuits on Plastic -- 13.5.1 Two-Dimensional Integration -- 13.5.2 Three-Dimensional and Heterogeneous Integration -- 13.6 µs-Sc Electronics on Rubber -- 13.7 Conclusion -- References -- 14. Future Directions for Solution-Based Processing of Inorganic Materials -- 14.1 Introduction -- 14.2 Materials -- 14.2.1 Semiconductors -- 14.2.2 Oxides -- 14.2.3 Metals -- 14.3 Deposition Approaches -- 14.4 Next Generation of Applications -- 14.4.1 New Solar Cells: Quantum Dot (QD) Structures and Multiple Exciton Generation (MEG) -- 14.4.2 Organic-Inorganic Hybrids -- 14.4.3 Non Linear Optics -- 14.4.4 3D-Structures.

14.4.5 Catalysis/Artificial Photosynthesis.
Abstract:
Discover the materials set to revolutionize the electronics industry The search for electronic materials that can be cheaply solution-processed into films, while simultaneously providing quality device characteristics, represents a major challenge for materials scientists. Continuous semiconducting thin films with large carrier mobilities are particularly desirable for high-speed microelectronic applications, potentially providing new opportunities for the development of low-cost, large-area, flexible computing devices, displays, sensors, and solar cells. To date, the majority of solution-processing research has focused on molecular and polymeric organic films. In contrast, this book reviews recent achievements in the search for solution-processed inorganic semiconductors and other critical electronic components. These components offer the potential for better performance and more robust thermal and mechanical stability than comparable organic-based systems. Solution Processing of Inorganic Materials covers everything from the more traditional fields of sol-gel processing and chemical bath deposition to the cutting-edge use of nanomaterials in thin-film deposition. In particular, the book focuses on materials and techniques that are compatible with high-throughput, low-cost, and low-temperature deposition processes such as spin coating, dip coating, printing, and stamping. Throughout the text, illustrations and examples of applications are provided to help the reader fully appreciate the concepts and opportunities involved in this exciting field. In addition to presenting the state-of-the-art research, the book offers extensive background material. As a result, any researcher involved or interested in electronic device fabrication can turn to this book to become fully versed in the solution-processed inorganic materials that are set to

revolutionize the electronics industry.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: