Cover image for Surface Complexation Modeling : Gibbsite.
Surface Complexation Modeling : Gibbsite.
Title:
Surface Complexation Modeling : Gibbsite.
Author:
Karamalidis, Athanasios K.
ISBN:
9780470642658
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (312 pages)
Contents:
SURFACE COMPLEXATION MODELING GIBBSITE -- CONTENTS -- FOREWORD -- PREFACE -- 1 ALUMINUM OXIDES AND HYDROXIDES UNDER ENVIRONMENTAL CONDITIONS -- 1.1 INTRODUCTION -- 1.2 OCCURRENCE OF ALUMINUM OXIDES AND HYDROXIDES IN THE SUBSURFACE -- 1.3 OCCURRENCE OF ALUMINUM OXIDES AND HYDROXIDES IN SURFACE WATER -- 1.4 USE OF ALUMINUM HYDROXIDE IN WATER TREATMENT -- 1.5 SUMMARY -- 2 FORMATION AND PROPERTIES OF GIBBSITE AND CLOSELY RELATED MINERALS -- 2.1 Al POLYMERIZATION MODELS -- 2.1.1 The "Core-Links" Model -- 2.1.2 The "Cage-Like" (Keggin-Al13 Structure) Model -- 2.1.3 The "Continuous" Model -- 2.2 FORMATION OF GIBBSITE AND OTHER Al HYDROXIDES AND OXYHYDROXIDES -- 2.3 ALUMINUM HYDROXIDE POLYMORPHS: STRUCTURE AND NOMENCLATURE -- 2.4 GIBBSITE -- 2.4.1 Kinetics of Precipitation and Crystal Growth -- 2.4.2 Structure -- 2.4.3 Common Techniques of Synthesis -- 2.4.4 Synthesized Gibbsite and Differences from Natural Gibbsite -- 2.5 BAYERITE -- 2.5.1 Kinetics of Precipitation and Crystal Growth -- 2.5.2 Structure -- 2.5.3 Differences from Gibbsite -- 2.5.4 Synthesized Bayerite and Transformation to Gibbsite -- 2.6 NORDSTRANDITE -- 2.7 DOYLEITE -- 2.8 OTHER FORMS OF ALUMINUM OXIDES AND OXYHYDROXIDES -- 2.8.1 Corundum (α-Al2O3) -- 2.8.2 Boehmite (γ-AlOOH) -- 2.8.3 Diaspore (α-AlOOH) -- 2.9 OTHER FORMS MANUFACTURED UNDER HIGH TEMPERATURE AND PRESSURE -- 3 TYPES OF AVAILABLE DATA -- 3.1 GIBBSITE STRUCTURE VERIFICATION -- 3.2 PHYSICAL-CHEMICAL PROPERTIES -- 3.2.1 Specific Surface Area -- 3.2.2 Surface Site Characterization -- 3.2.2.1 Hydroxyl Surface Sites -- 3.2.2.2 Surface Site Density -- 3.3 ACID-BASE TITRATION DATA -- 3.4 CATION AND ANION SORPTION DATA -- 3.5 SPECTROSCOPIC DATA FOR SORPTION ON GIBBSITE -- 3.6 PROTON RELEASE/UPTAKE DATA -- 3.7 ELECTROKINETIC DATA -- 3.8 SUMMARY -- 4 DATA COMPILATION AND TREATMENT METHODS -- 4.1 COLLECTION OF DATA.

4.2 ASSESSMENT OF DATA QUALITY -- 4.2.1 Solid-Preparation Method -- 4.2.2 Type of Reaction Vessel -- 4.2.3 Nature of Background Electrolyte -- 4.2.4 Sorption Kinetics -- 4.2.4.1 Proton Sorption Kinetics -- 4.2.4.2 Cation and Anion Sorption Kinetics -- 4.2.5 Method of Solid-Liquid Separation -- 4.2.6 CO2 Exclusion -- 4.2.7 Experimental Temperature -- 4.3 COMPILATION OF SURFACE PROPERTIES -- 4.4 EXTRACTION OF EQUILIBRIUM SORPTION CONSTANTS -- 4.4.1 Solution Activity Coefficients -- 4.4.2 FITEQL -- 4.4.3 Data Grouping -- 4.4.4 Selection of Surface Species -- 4.4.5 Selection of Best Estimates -- 4.5 OPTIMAL-FIT SIMULATIONS -- 4.6 PRESENTATION OF RESULTS -- 5 SURFACE PROPERTIES OF GIBBSITE -- 5.1 SURFACE AREA -- 5.2 SITE DENSITY -- 5.3 POINT OF ZERO CHARGE -- 5.4 SURFACE ACID-BASE CHEMISTRY -- 5.5 EFFECTS OF DISSOLUTION ON GIBBSITE SURFACE ACID-BASE CHEMISTRY -- 5.6 SUMMARY -- 6 CATION SORPTION ON GIBBSITE -- 6.1 MODELING METHODOLOGY AND REACTIONS -- 6.2 AVAILABLE SPECTROSCOPIC DATA AND USE IN MODELING -- 6.2.1 Copper -- 6.2.2 Lead -- 6.2.3 Cobalt -- 6.2.4 Cadmium -- 6.2.5 Manganese -- 6.2.6 Iron(II) -- 6.2.7 Calcium -- 6.2.8 Zinc -- 6.2.9 Mercury -- 6.2.10 Uranium -- 6.2.11 Thorium -- 6.3 COPPER -- 6.4 LEAD -- 6.5 COBALT -- 6.6 CADMIUM -- 6.7 MANGANESE -- 6.8 IRON (II) -- 6.9 CALCIUM -- 6.10 ZINC -- 6.11 MERCURY -- 6.12 URANIUM -- 6.13 THORIUM -- 7 ANION SORPTION ON GIBBSITE -- 7.1 MODELING METHODOLOGY AND REACTIONS -- 7.2 AVAILABLE SPECTROSCOPIC DATA AND USE IN MODELING -- 7.2.1 Phosphate -- 7.2.2 Arsenate -- 7.2.3 Arsenite -- 7.2.4 Molybdate -- 7.2.5 Selenate -- 7.2.6 Chromate -- 7.2.7 Borate -- 7.2.8 Sulfate -- 7.2.9 Fluoride -- 7.2.10 Silicate -- 7.3 PHOSPHATE -- 7.4 ARSENATE -- 7.5 ARSENITE -- 7.6 MOLYBDATE -- 7.7 SELENATE -- 7.8 CHROMATE -- 7.9 BORATE -- 7.10 SULFATE -- 7.11 FLUORIDE -- 7.12 SILICATE -- 8 COHERENCE AND EXTRAPOLATION OF THE RESULTS.

8.1 CATION SORPTION ON GIBBSITE -- 8.2 ANION SORPTION ON GIBBSITE -- 8.3 COMPARISON OF GIBBSITE SURFACE-COMPLEXATION CONSTANTS WITH THOSE OF GOETHITE, HYDROUS FERRIC OXIDE, AND HYDROUS MANGANESE OXIDE -- 8.4 SUMMARY -- REFERENCES -- APPENDIX A: SUMMARY OF EXPERIMENTAL DETAILS -- AUTHOR INDEX -- SUBJECT INDEX.
Abstract:
This book provides a description of the generalized two layer surface complexation model, data treatment procedures, and thermodynamic constants for sorption of metal cations and anions on gibbsite, the most common form of aluminum oxide found in nature and one of the most abundant minerals in soils, sediments, and natural waters. The book provides a synopsis of aluminum oxide forms and a clearly defined nomenclature. Compilations of available data for sorption of metal cations and anions on gibbsite are presented, and the results of surface complexation model fitting of these data are given. The consistency of the thermodynamic surface complexation constants extracted from the data is examined through development of linear free energy relationships which are also used to predict thermodynamic constants for ions for which insufficient data are available to extract constants. The book concludes with a comparison of constants extracted from data for sorption on gibbsite with those determined previously for hydrous ferric oxide (HFO), hydrous manganese oxide (HMO), and goethite. The overall objective of this book is the development and presentation of an internally consistent thermodynamic database for sorption of inorganic cations and anions on gibbsite, an abundant and reactive mineral in soils, sediments, and aquatic systems. Its surface has a high affinity for sorption of metal cations and anions, including radionuclides. The gibbsite database will enable simulation and prediction of the influence of sorption on the fate of these chemical species in natural systems and treatment processes in which aluminum oxides are abundant. It thus will help to advance the practical application of surface complexation modeling.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: