Cover image for Thermal Energy Storage : Systems and Applications.
Thermal Energy Storage : Systems and Applications.
Title:
Thermal Energy Storage : Systems and Applications.
Author:
Dincer, Ibrahim.
ISBN:
9780470970737
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (621 pages)
Contents:
THERMAL ENERGY STORAGE -- Contents -- About the Authors -- Preface -- Acknowledgements -- 1 General Introductory Aspects for Thermal Engineering -- 1.1 Introduction -- 1.2 Systems of Units -- 1.3 Fundamental Properties and Quantities -- 1.3.1 Mass, Time, Length, and Force -- 1.3.2 Pressure -- 1.3.3 Temperature -- 1.3.4 Specific Volume and Density -- 1.3.5 Mass and Volumetric Flow Rates -- 1.4 General Aspects of Thermodynamics -- 1.4.1 Thermodynamic Systems -- 1.4.2 Process -- 1.4.3 Cycle -- 1.4.4 Thermodynamic Property -- 1.4.5 Sensible and Latent Heats -- 1.4.6 Latent Heat of Fusion -- 1.4.7 Vapor -- 1.4.8 Thermodynamic Tables -- 1.4.9 State and Change of State -- 1.4.10 Specific Internal Energy -- 1.4.11 Specific Enthalpy -- 1.4.12 Specific Entropy -- 1.4.13 Pure Substance -- 1.4.14 Ideal Gases -- 1.4.15 Energy Transfer -- 1.4.16 Heat -- 1.4.17 Work -- 1.4.18 The First Law of Thermodynamics -- 1.4.19 The Second Law of Thermodynamics -- 1.4.20 Reversibility and Irreversibility -- 1.4.21 Exergy -- 1.5 General Aspects of Fluid Flow -- 1.5.1 Classification of Fluid Flows -- 1.5.2 Viscosity -- 1.5.3 Equations of Flow -- 1.5.4 Boundary Layer -- 1.6 General Aspects of Heat Transfer -- 1.6.1 Conduction Heat Transfer -- 1.6.2 Convection Heat Transfer -- 1.6.3 Radiation Heat Transfer -- 1.6.4 Thermal Resistance -- 1.6.5 The Composite Wall -- 1.6.6 The Cylinder -- 1.6.7 The Sphere -- 1.6.8 Conduction with Heat Generation -- 1.6.9 Natural Convection -- 1.6.10 Forced Convection -- 1.7 Concluding Remarks -- 2 Energy Storage Systems -- 2.1 Introduction -- 2.2 Energy Demand -- 2.3 Energy Storage -- 2.4 Energy Storage Methods -- 2.4.1 Mechanical Energy Storage -- 2.4.2 Chemical Energy Storage -- 2.4.3 Biological Storage -- 2.4.4 Magnetic Storage -- 2.4.5 Thermal Energy Storage (TES) -- 2.5 Hydrogen for Energy Storage -- 2.5.1 Storage Characteristics of Hydrogen.

2.5.2 Hydrogen Storage Technologies -- 2.5.3 Hydrogen Production -- 2.6 Comparison of ES Technologies -- 2.7 Concluding Remarks -- 3 Thermal Energy Storage (TES) Methods -- 3.1 Introduction -- 3.2 Thermal Energy -- 3.3 Thermal Energy Storage -- 3.3.1 Basic Principle of TES -- 3.3.2 Benefits of TES -- 3.3.3 Criteria for TES Evaluation -- 3.3.4 TES Market Considerations -- 3.3.5 TES Heating and Cooling Applications -- 3.3.6 TES Operating Characteristics -- 3.3.7 ASHRAE TES Standards -- 3.4 Solar Energy and TES -- 3.4.1 TES Challenges for Solar Applications -- 3.4.2 TES Types and Solar Energy Systems -- 3.4.3 Storage Durations and Solar Applications -- 3.4.4 Building Applications of TES and Solar Energy -- 3.4.5 Design Considerations for Solar Energy-Based TES -- 3.5 TES Methods -- 3.6 Sensible TES -- 3.6.1 Thermally Stratified TES Tanks -- 3.6.2 Concrete TES -- 3.6.3 Rock and Water/Rock TES -- 3.6.4 Aquifer Thermal Energy Storage (ATES) -- 3.6.5 Solar Ponds -- 3.6.6 Evacuated Solar Collector TES -- 3.7 Latent TES -- 3.7.1 Operational Aspects of Latent TES -- 3.7.2 Phase Change Materials (PCMs) -- 3.8 Cold Thermal Energy Storage (CTES) -- 3.8.1 Working Principle -- 3.8.2 Operational Loading of CTES -- 3.8.3 Design Considerations -- 3.8.4 CTES Sizing Strategies -- 3.8.5 Load Control and Monitoring in CTES -- 3.8.6 CTES Storage Media Selection and Characteristics -- 3.8.7 Storage Tank Types for CTES -- 3.8.8 Chilled-Water CTES -- 3.8.9 Ice CTES -- 3.8.10 Ice Forming -- 3.8.11 Ice Thickness Controls -- 3.8.12 Technical and Design Aspects of CTES -- 3.8.13 Selection Aspects of CTES -- 3.8.14 Cold-Air Distribution in CTES -- 3.8.15 Potential Benefits of CTES -- 3.8.16 Electric Utilities and CTES -- 3.9 Seasonal TES -- 3.9.1 Seasonal TES for Heating Capacity -- 3.9.2 Seasonal TES for Cooling Capacity -- 3.9.3 Illustration -- 3.10 Concluding Remarks.

4 Thermal Energy Storage and Environmental Impact -- 4.1 Introduction -- 4.2 Energy and the Environment -- 4.3 Major Environmental Problems -- 4.3.1 Acid Rain -- 4.3.2 Greenhouse Effect (Global Climate Change) -- 4.3.3 Stratospheric Ozone Depletion -- 4.4 Environmental Impact and TES Systems and Applications -- 4.5 Potential Solutions to Environmental Problems -- 4.5.1 General Solutions -- 4.5.2 TES-Related Solutions -- 4.6 Sustainable Development -- 4.6.1 Conceptual Issues -- 4.6.2 The Brundtland Commission's Definition -- 4.6.3 Environmental Limits -- 4.6.4 Global, Regional, and Local Sustainability -- 4.6.5 Environmental, Social, and Economic Components of Sustainability -- 4.6.6 Energy and Sustainable Development -- 4.6.7 Environment and Sustainable Development -- 4.6.8 Achieving Sustainable Development in Larger Countries -- 4.6.9 Essential Factors for Sustainable Development -- 4.7 Illustrative Examples and Case Studies -- 4.7.1 The South Coast Air Quality Management District (California) -- 4.7.2 Anova Verzekering Co. Building (Amersfoort, The Netherlands) -- 4.7.3 The Trane Company's Technology Center (La Crosse, WI) -- 4.7.4 The Ministry of Finance Building (Bercy, France) -- 4.7.5 The City of Saarbrucken (Saarbrucken, Germany) -- 4.8 Concluding Remarks -- 5 Thermal Energy Storage and Energy Savings -- 5.1 Introduction -- 5.2 TES and Energy Savings -- 5.2.1 Utilization of Waste or Surplus Energy -- 5.2.2 Reduction of Demand Charges -- 5.2.3 Deferring Equipment Purchases -- 5.3 Additional Energy Savings Considerations for TES -- 5.3.1 Energy for Heating, Refrigeration, and Heat Pump Equipment -- 5.3.2 Storage Size Limitations -- 5.3.3 Thermal Load Profiles -- 5.3.4 Optimization of Conventional Systems -- 5.4 Energy Conservation with TES: Planning and Implementation -- 5.5 Some Limitations on Increased Efficiency.

5.5.1 Practical and Theoretical Limitations -- 5.5.2 Efficiency Limitations and Exergy -- 5.6 Energy Savings for Cold TES -- 5.6.1 Economic Aspects of TES Systems for Cooling Capacity -- 5.6.2 Energy Savings by Cold TES -- 5.6.3 Case Studies for TES Energy Savings -- 5.7 Concluding Remarks -- 6 Energy and Exergy Analyses of Thermal Energy Storage Systems -- 6.1 Introduction -- 6.2 Theory: Energy and Exergy Analyses -- 6.2.1 Motivation for Energy and Exergy Analyses -- 6.2.2 Conceptual Balance Equations for Mass, Energy, and Entropy -- 6.2.3 Detailed Balance Equations for Mass, Energy, and Entropy -- 6.2.4 Basic Quantities for Exergy Analysis -- 6.2.5 Detailed Exergy Balance -- 6.2.6 The Reference Environment -- 6.2.7 Efficiencies -- 6.2.8 Properties for Energy and Exergy Analyses -- 6.2.9 Implications of Results of Exergy Analyses -- 6.2.10 Steps for Energy and Exergy Analyses -- 6.3 Thermodynamic Considerations in TES Evaluation -- 6.3.1 Determining Important Analysis Quantities -- 6.3.2 Obtaining Appropriate Measures of Efficiency -- 6.3.3 Pinpointing Losses -- 6.3.4 Assessing the Effects of Stratification -- 6.3.5 Accounting for Time Duration of Storage -- 6.3.6 Accounting for Variations in Reference-Environment Temperature -- 6.3.7 Closure -- 6.4 Exergy Evaluation of a Closed TES System -- 6.4.1 Description of the Case Considered -- 6.4.2 Analysis of the Overall Process -- 6.4.3 Analysis of Subprocesses -- 6.4.4 Alternative Formulations of Subprocess Efficiencies -- 6.4.5 Relations between Performance of Subprocesses and Overall Process -- 6.4.6 Example -- 6.4.7 Closure -- 6.5 Appropriate Efficiency Measures for Closed TES Systems -- 6.5.1 TES Model Considered -- 6.5.2 Energy and Exergy Balances -- 6.5.3 Energy and Exergy Efficiencies -- 6.5.4 Overall Efficiencies -- 6.5.5 Charging-Period Efficiencies -- 6.5.6 Storing-Period Efficiencies.

6.5.7 Discharging-Period Efficiencies -- 6.5.8 Summary of Efficiency Definitions -- 6.5.9 Illustrative Example -- 6.5.10 Closure -- 6.6 Importance of Temperature in Performance Evaluations for Sensible TES Systems -- 6.6.1 Energy, Entropy, and Exergy Balances for the TES System -- 6.6.2 TES System Model Considered -- 6.6.3 Analysis -- 6.6.4 Comparison of Energy and Exergy Efficiencies -- 6.6.5 Illustration -- 6.6.6 Closure -- 6.7 Exergy Analysis of Aquifer TES Systems -- 6.7.1 ATES Model -- 6.7.2 Energy and Exergy Analyses -- 6.7.3 Effect of a Threshold Temperature -- 6.7.4 Case Study -- 6.7.5 Closure -- 6.8 Exergy Analysis of Thermally Stratified Storages -- 6.8.1 General Stratified TES Energy and Exergy Expressions -- 6.8.2 Temperature-Distribution Models and Relevant Expressions -- 6.8.3 Discussion and Comparison of Models -- 6.8.4 Illustrative Example: The Exergy-Based Advantage of Stratification -- 6.8.5 Illustrative Example: Evaluating Stratified TES Energy and Exergy -- 6.8.6 Increasing TES Exergy-Storage Capacity Using Stratification -- 6.8.7 Illustrative Example: Increasing TES Exergy with Stratification -- 6.8.8 Closure -- 6.9 Energy and Exergy Analyses of Cold TES Systems -- 6.9.1 Energy Balances -- 6.9.2 Exergy Balances -- 6.9.3 Energy and Exergy Efficiencies -- 6.9.4 Illustrative Example -- 6.9.5 Case Study: Thermodynamic Performance of a Commercial Ice TES System -- 6.9.6 Closure -- 6.10 Exergy-Based Optimal Discharge Periods for Closed TES Systems -- 6.10.1 Analysis Description and Assumptions -- 6.10.2 Evaluation of Storage-Fluid Temperature During Discharge -- 6.10.3 Discharge Efficiencies -- 6.10.4 Exergy-Based Optimum Discharge Period -- 6.10.5 Illustrative Example -- 6.10.6 Closure -- 6.11 Exergy Analysis of Solar Ponds -- 6.11.1 Experimental Solar Pond -- 6.11.2 Data Acquisition and Analysis.

6.11.3 Energy and Exergy Assessments.
Abstract:
The ability of thermal energy storage (TES) systems to facilitate energy savings, renewable energy use and reduce environmental impact has led to a recent resurgence in their interest. The second edition of this book offers up-to-date coverage of recent energy efficient and sustainable technological methods and solutions, covering analysis, design and performance improvement as well as life-cycle costing and assessment. As well as having significantly revised the book for use as a graduate text, the authors address real-life technical and operational problems, enabling the reader to gain an understanding of the fundamental principles and practical applications of thermal energy storage technology. Beginning with a general summary of thermodynamics, fluid mechanics and heat transfer, this book goes on to discuss practical applications with chapters that include TES systems, environmental impact, energy savings, energy and exergy analyses, numerical modeling and simulation, case studies and new techniques and performance assessment methods.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: