Cover image for Dendrimer-Based Drug Delivery Systems : From Theory to Practice.
Dendrimer-Based Drug Delivery Systems : From Theory to Practice.
Title:
Dendrimer-Based Drug Delivery Systems : From Theory to Practice.
Author:
Cheng, Yiyun.
ISBN:
9781118275207
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (544 pages)
Series:
Wiley Series in Drug Discovery and Development ; v.18

Wiley Series in Drug Discovery and Development
Contents:
DENDRIMER-BASED DRUG DELIVERY SYSTEMS: From Theory to Practice -- Contents -- Foreword -- Preface -- Acknowledgments -- Contributors -- About the Editor -- 1 Dendrimer Chemistry: Supramolecular Perspectives and Applications -- 1.1. INTRODUCTION -- 1.1.1. Historical Background -- 1.1.2. Architectural Concepts -- 1.1.3. Initial Reduction to Practice -- 1.2. SUPRAMOLECULAR PERSPECTIVES -- 1.2.1. Unimolecular Micelles-The Advent of the Container -- 1.2.2. Framework Conformational Control -- 1.2.3. Harnessing Electronic Properties -- 1.2.4. Drug Delivery Systems -- 1.2.5. Dendritic Self-Assembly, Sensors, and Devices -- 1.3. CONCLUSIONS -- REFERENCES -- 2 Physicochemical Properties of Dendrimers and Dendrimer Complexes -- 2.1. INTRODUCTION -- 2.2. DENDRIMERS -- 2.2.1. PAMAM Dendrimers -- 2.2.2. Other Dendrimers -- 2.3. PHYSICOCHEMICAL PROPERTIES OF DENDRIMERS -- 2.3.1. Static and Dynamic Structures -- 2.3.2. Doping Property -- 2.3.3. Adsorption and Aggregation Properties -- 2.3.4. Luminescence Property -- 2.4. DENDRIMER COMPLEXES -- 2.4.1. Complexes with Functional Molecules -- 2.4.2. Complexes with Polymers -- 2.4.3. Complexes with Inorganic Materials -- 2.5. CONCLUSIONS -- REFERENCES -- 3 The Use of Dendrimers to Optimize the Physicochemical and Therapeutic Properties of Drugs -- 3.1. INTRODUCTION -- 3.2. NEOPLASTIC DISORDERS -- 3.3. GASTROINTESTINAL TRACT -- 3.4. CARDIOVASCULAR SYSTEM -- 3.5. CENTRAL NERVOUS SYSTEM -- 3.6. PAIN AND CONSCIOUSNESS -- 3.7. EYE -- 3.8. EAR, NOSE, AND OROPHARYNX -- 3.9. RESPIRATORY SYSTEM -- 3.10. SKIN -- 3.11. INFECTIONS AND INFESTATIONS -- 3.12. IMMUNE SYSTEM -- 3.13. CONCLUSIONS -- REFERENCES -- 4 Biological Properties of Phosphorus Dendrimers -- 4.1. INTRODUCTION -- 4.2. SYNTHESIS AND FUNCTIONALIZATION OF PHOSPHOROUS-CONTAINING DENDRIMERS FOR BIOLOGICAL PURPOSES -- 4.3. CYTOTOXICITY ASSAYS OF PHOSPHORUS DENDRIMERS.

4.4. PHOSPHORUS DENDRIMERS FOR BIOLOGICAL IMAGING -- 4.5. PHOSPHORUS DENDRIMERS AS NANO-CARRIERS -- 4.5.1. Electrostatic Interactions with One Drug per Terminal Function -- 4.5.2. Electrostatic Interactions for Transfection Experiments -- 4.6. PHOSPHORUS DENDRIMERS AS DRUGS BY THEMSELVES -- 4.6.1. Antiprion Activity of Phosphorus Dendrimers -- 4.6.2. Stimulation of the Human Immune System -- 4.7. CONCLUSIONS -- REFERENCES -- 5 Dendrimer-Based Prodrugs: Synthesis and Biological Evaluation -- 5.1. INTRODUCTION -- 5.2. DESIGN OF DENDRIMER-BASED PRODRUGS -- 5.2.1. A Theoretical Perspective -- 5.2.2. Factors Affecting Linker Selection and Drug Release -- 5.3. SYNTHESIS AND CHARACTERIZATION OF DENDRIMER-BASED PRODRUGS -- 5.3.1. NSAID Prodrugs -- 5.3.2. Anticancer Prodrugs -- 5.3.3. Prodrugs of P-Glycoprotein Substrates -- 5.3.4. Acetylcysteine Prodrugs -- 5.3.5. Colchicine Prodrugs -- 5.3.6. Drug-Integrated Dendrimers -- 5.4. IN VITRO STABILITY OF DENDRIMER-BASED PRODRUGS -- 5.4.1. Chemical Stability -- 5.4.2. Enzymatic Stability -- 5.5. IN VITRO CYTOTOXICITY OF DENDRIMER-BASED PRODRUGS -- 5.6. IN VITRO PERMEABILITY OF DENDRIMER-BASED PRODRUGS -- 5.7. CONCLUSIONS -- REFERENCES -- 6 Improving the Biocompatibility of Dendrimers in Drug Delivery -- 6.1. INTRODUCTION -- 6.2. SAFETY ISSUES OF DENDRIMERS -- 6.3. DESIGNING OF BIOCOMPATIBLE DENDRIMERS FOR THERAPEUTIC PURPOSES -- 6.3.1. Construction of Novel Biocompatible Dendrimers -- 6.3.1.1. Construction of Dendrimers with Biocompatible Units -- 6.3.1.2. Construction of Long-Circulation Dendrimers -- 6.3.1.3. Construction of Cleavable Dendrimers -- 6.3.2. Modification of Already Established Dendrimers -- 6.3.2.1. PEGylated Dendrimers -- 6.3.2.2. Acetylated Dendrimers -- 6.3.2.3. Glycosylated Dendrimers -- 6.3.2.4. Other Functionalized Dendrimers -- 6.4. CONCLUSIONS -- REFERENCES.

7 Degradable Dendrimers for Drug Delivery -- 7.1. INTRODUCTION -- 7.1.1. Literature Survey and Historical Aspects -- 7.1.2. Content and Objectives -- 7.1.3. Survey of Applications of Degradable Dendrimers in Drug Delivery -- 7.2. DENDRIMER-DRUG CONJUGATES AS PRODRUGS -- 7.2.1. Importance of Dendritic Architectures -- 7.2.2. Biocompatibility and Toxicity of Dendrimers -- 7.2.3. Improving the Therapeutic Index: Targeting, Cellular Uptake, Biodistribution, and Drug Persistence -- 7.3. ANTICANCER DENDRIMER-DRUG CONJUGATES -- 7.3.1. Fluorouracil (5-FU) -- 7.3.2. Methotrexate (MTX) -- 7.3.3. Doxorubicin (DOX) -- 7.3.4. Paclitaxel (PTX) -- 7.3.5. Camptotecin (CPT) -- 7.3.6. Lamellarin D -- 7.3.7. Etoposide -- 7.3.8. Chlorambucil -- 7.3.9. Melphalan and Bendamustine -- 7.3.10. Colchicine -- 7.3.11. Epirubicin -- 7.3.12. Tubulysin -- 7.3.13. Other Drugs Bound to PAMAM Dendrimers -- 7.3.14. Metal-Based Anticancer Drugs -- 7.3.14.1. Platinum -- 7.3.14.2. Ruthenium -- 7.3.14.3. Radioactive Metals -- 7.4. ANTICANCER MULTIFUNCTIONAL DENDRITIC PLATFORMS WITH TARGETING UNITS -- 7.5. ANTICANCER DENDRITIC PLATFORMS FOR POLYTHERAPY -- 7.6. ANTIINFLAMATORY DENDRIMER-DRUG CONJUGATES -- 7.6.1. Nonsteroidal Dendrimer Conjugates -- 7.6.1.1. Aceclofenac -- 7.6.1.2. Ibuprofen -- 7.6.1.3. Naproxen -- 7.6.1.4. N-acetyl-L-cysteine -- 7.6.2. Steroidal Dendrimer Conjugates -- 7.6.2.1. Methylprednisolone -- 7.6.2.2. Cholesterol -- 7.6.2.3. Dexamethasone -- 7.6.3. Antiinflammatory Eye Delivery -- 7.6.3.1. Glucosamine -- 7.6.3.2. Carteolol -- 7.7. ANTIBACTERIAL AND ANTIMICROBIAL DENDRIMER-DRUG CONJUGATES -- 7.7.1. Penicillin V -- 7.7.2. Desferrioxamine B -- 7.7.3. Amphotericin B -- 7.7.4. Other Antileishmanial and Antichagasic Drugs -- 7.7.5. Other Dendrimer-Drug Conjugates -- 7.8. CONCLUDING REMARKS -- ACKNOWLEDGMENTS -- REFERENCES.

8 Design of Stimuli-Responsive Dendrimers for Biomedical Purposes -- 8.1. INTRODUCTION -- 8.2. PEGYLATED DENDRIMERS WITH CONTROLLED RELEASE PROPERTIES -- 8.2.1. PEGylated Dendritic Polymers with pH-Sensitivity -- 8.2.2. PEGylated Dendritic Polymers with Light-Sensitivity -- 8.2.3. PEGylated Dendrimers with Middle-Layered Shells -- 8.3. TEMPERATURE-DEPENDENT DENDRITIC POLYMERS -- 8.3.1. Dendritic Polymers Modified with Thermo-Sensitive Polymers -- 8.3.2. Dendrimers Containing Thermo-Sensitive Moieties -- 8.4. COLLAGEN-MIMIC DENDRIMERS AND DENDRIMER-BASED HYDROGELS -- 8.4.1. Collagen-Mimic Dendrimers -- 8.4.2. Dendrimer-Based Hydrogels -- 8.5. CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- 9 Dendrimer-Based Gene Delivery Systems: Administration Routes and In Vivo Evaluation -- 9.1. INTRODUCTION -- 9.2. DENDRIPLEXES AS VECTORS -- 9.2.1. Dendrimers Used in Gene Therapy -- 9.2.2. Electrostatic Interactions and the Role of Charge Ratios -- 9.2.3. Dendrimer Generation -- 9.2.4. The Role of Dendrimer Architecture -- 9.2.5. The Role of Dendrimer Chemistry and Modification -- 9.2.6. The Bulk Environment -- 9.3. TRANSFECTION OF CELLS -- 9.3.1. Uptake -- 9.3.2. Intracellular Trafficking -- 9.4. GENE DELIVERY IN VIVO -- 9.4.1. The Physiological Environment as Barrier -- 9.4.2. Protein Adsorption and Corona Formation on NPs -- 9.4.3. The Effects of Corona Formation on NP Properties -- 9.4.4. Local and Topical Gene Therapy -- 9.4.5. Systemic Gene Therapy -- 9.5. CONCLUSIONS -- REFERENCES -- 10 Triazine Dendrimers for DNA and siRNA Delivery: Progress, Challenges, and Opportunities -- 10.1. INTRODUCTION -- 10.1.1. Viruses Lead the Way -- 10.1.2. Nonviral Carriers Become More Appealing -- 10.1.2.1. Physical Methods of Gene Delivery -- 10.1.2.2. Liposomes -- 10.1.2.3. Polymers -- 10.1.2.4. Dendrimers -- 10.2. TRIAZINE DENDRIMERS: EARLY SYNTHETIC ACHIEVEMENTS.

10.3. TRIAZINE DENDRIMERS FOR TRANSFECTION: SELECTION CRITERIA FOR STRUCTURES -- 10.3.1. Surface Groups -- 10.3.1.1. Hydroxyl Groups: Reducing Cytotoxicity -- 10.3.1.2. Hydrophobic Groups: Stabilizing Complex Formation or Improving Endosomal Escape -- 10.3.1.3. Guanidines: Improving Binding and Cellular Uptake -- 10.3.2. Core Manipulations -- 10.3.2.1. Higher Generation -- 10.3.2.2. Rigid versus Flexible -- 10.4. DNA TRANSFECTION USING TRIAZINE DENDRIMERS -- 10.4.1. Binding Affinity -- 10.4.1.1. Effect of Peripheral Groups -- 10.4.1.2. Effect of the Core -- 10.4.2. Size and Charge -- 10.4.3. Cytotoxicity -- 10.4.3.1. Cytotoxicity -- 10.4.3.2. Hemolysis -- 10.4.3.3. Aggregation of Erythrocytes -- 10.4.4. Transfection Efficiency -- 10.4.4.1. Effect of the Peripheral Groups -- 10.4.4.2. Effect of the Core: Generation and Flexibility -- 10.5. siRNA TRANSFECTION USING TRIAZINE DENDRIMERS -- 10.5.1. Binding Properties -- 10.5.1.1. Binding Affinity -- 10.5.1.2. Effect of the Peripheral Groups -- 10.5.1.3. Effect of the Core: Generation and Flexibility -- 10.5.1.4. Complex Stability -- 10.5.1.5. Effect of the Peripheral Groups -- 10.5.1.6. Effect of the Core: Generation and Flexibility -- 10.5.2. Size and Charge -- 10.5.2.1. Effect of the Peripheral Groups on the Size -- 10.5.2.2. Effect of the Core on the Size: Generation and Flexibility -- 10.5.2.3. Effect of the Peripheral Groups on the Zeta Potential -- 10.5.2.4. Effect of the Core on the Zeta Potential: Generation and Flexibility -- 10.5.3. Uptake and Subcellular Distribution -- 10.5.3.1. Effect of the Peripheral Groups on Uptake -- 10.5.3.2. Effect of the Core on Uptake: Generation and Flexibility -- 10.5.3.3. Effect of the Peripheral Groups -- 10.5.3.4. Effect of the Core: Generation and Flexibility -- 10.5.4. Transfection Efficiency -- 10.5.4.1. Effect of the Peripheral Groups.

10.5.4.2. Effect of the Core: Generation and Flexibility.
Abstract:
The opportunities and challenges of using dendrimers to improve drug delivery Among pharmaceutical and biomedical researchers, the use of dendrimers in drug delivery systems has attracted increasing interest. In particular, researchers have noted that the volume of a dendrimer increases when it has a positive charge. If this property can be applied effectively, dendrimers have enormous potential in drug delivery systems, directly supplying medication to targeted human organs. With contributions from an international team of pioneers and experts in dendrimer research, this book provides a comprehensive overview of the latest research efforts in designing and optimizing dendrimer-based drug delivery systems. The book analyzes key issues, demonstrating the critical connections that link fundamental concepts, design, synthesis, analytical methodology, and biological assessment to the practical use of dendrimers in drug delivery applications. Topics covered include: Dendrimer history Synthesis Physicochemical properties Principles of drug delivery Applications in diverse biomedical fields Dendrimer-Based Drug Delivery Systems reflects the authors' thorough review and analysis of the current literature as well as their own firsthand experience in the lab. Readers will not only discover the current state of the science, but also gain valuable insights into fruitful directions for future research. References at the end of each chapter serve as a gateway to the growing body of literature in the field, enabling readers to explore each individual topic in greater depth. Pharmaceutical and biomedical researchers will find this book a unique and essential guide to the opportunities, issues, and challenges involved in fully exploiting the potential of dendrimers to improve drug delivery.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: