Cover image for Polymer Composites : Macro- and Microcomposites.
Polymer Composites : Macro- and Microcomposites.
Title:
Polymer Composites : Macro- and Microcomposites.
Author:
Thomas, Sabu.
ISBN:
9783527645237
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (848 pages)
Contents:
Polymer Composites -- Contents -- The Editors -- Preface -- List of Contributors -- Part One: Introduction to Polymer Composites -- 1 Advances in Polymer Composites: Macro- and Microcomposites - State of the Art, New Challenges, and Opportunities -- 1.1 Introduction -- 1.2 Classification of Composites -- 1.2.1 Polymer Matrix Composites -- 1.2.1.1 Factors Affecting Properties of PMCs -- 1.2.1.2 Fabrication of Composites -- 1.2.1.3 Applications -- 1.2.1.4 Recent Advances in Polymer Composites -- 1.3 Interface Characterization -- 1.3.1 Micromechanical Technique -- 1.3.2 Spectroscopic Tests -- 1.3.3 Microscopic Techniques -- 1.3.4 Thermodynamic Methods -- 1.4 New Challenges and Opportunities -- References -- 2 Shock and Impact Response of Glass Fiber-Reinforced Polymer Composites -- 2.1 Introduction -- 2.2 Analytical Analysis -- 2.2.1 Wave Propagation in Elastic-Viscoelastic Bilaminates -- 2.2.2 Solution at Wave Front: Elastic Precursor Decay -- 2.2.3 Late-Time Asymptotic Solution -- 2.3 Plate-Impact Experiments on GRPs -- 2.3.1 Material: Glass Fiber-Reinforced Polymer -- 2.3.2 Plate-Impact Shock Compression Experiments: Experimental Configuration -- 2.3.2.1 t-X Diagram (Time versus Distance) and S-V Diagram (Stress versus Velocity) for Plate-Impact Shock Compression Experiments -- 2.3.3 Plate-Impact Spall Experiments: Experimental Configuration -- 2.3.3.1 t-X Diagram (Time versus Distance) and S-V Diagram (Stress versus Velocity) for Plate-Impact Spall Experiments -- 2.3.4 Shock-Reshock and Shock-Release Experiments: Experimental Configuration -- 2.3.4.1 t-X Diagram (Time versus Distance) for Shock-Reshock and Shock-Release Experiments -- 2.4 Target Assembly -- 2.5 Experimental Results and Discussion -- 2.5.1 Plate-Impact Shock Compression Experiments -- 2.5.1.1 Structure of Shock Waves in the GRP.

2.5.1.2 Equation of State (Shock Velocity versus Particle Velocity) for S2-Glass GRP -- 2.5.1.3 Hugoniot Stress versus Hugoniot Strain (Hugoniot) -- 2.5.1.4 Hugoniot Stress versus Particle Velocity -- 2.5.2 Plate-Impact Spall Experiments -- 2.5.2.1 Determination of Spall Strength -- 2.5.2.2 Spall Strength of GRP Following Normal Shock Compression -- 2.5.2.3 Spall Strength of GRP Following Combined Shock Compression and Shear Loading -- 2.5.3 Shock-Reshock and Shock-Release Experiments -- 2.5.3.1 Self Consistent Method for the Determination of Dynamic Shear Yield Strength -- 2.5.3.2 Calculation of Initial Hugoniot Shocked State and Hugoniot Stress-Strain Curve -- 2.5.3.3 Calculation of Off-Hugoniot States for Reshock-Release Loading -- 2.5.3.4 Determination of the Critical Shear Strength in the Shocked State for S2-Glass GRP -- 2.6 Summary -- References -- 3 Interfaces in Macro- and Microcomposites -- 3.1 Introduction -- 3.2 Characterization of Interfaces in Macro- and Microcomposites -- 3.2.1 Surface Treatments of Reinforcements for Composite Materials -- 3.2.2 Microscale Tests -- 3.3 Micromechanics-Based Analysis -- 3.3.1 Micromechanical Homogenization Theory -- 3.3.1.1 Representative Volume Element -- 3.3.1.2 Eshelby.s Equivalent Inclusion Method -- 3.3.2 Effective Elastic Modulus -- 3.3.2.1 Self-Consistent Method -- 3.3.2.2 Mori-Tanaka Method -- 3.3.2.3 Ensemble-Volume Average Method -- 3.3.3 Interface Model -- 3.3.3.1 Linear Spring Model -- 3.3.3.2 Interface Stress Model -- 3.3.3.3 Dislocation-Like Model -- 3.3.3.4 Free Sliding Model -- 3.4 Interfacial Damage Modeling -- 3.4.1 Conventional Weibull.s Probabilistic Approach -- 3.4.2 Multilevel Damage Model -- 3.4.3 Cumulative Damage Model -- 3.5 Summary -- References -- 4 Preparation and Manufacturing Techniques for Macro- and Microcomposites -- 4.1 Introduction.

4.2 Thermoplastic Polymer Composites -- 4.2.1 Injection Molding -- 4.2.2 Extrusion -- 4.2.3 Compression Molding -- 4.2.4 Thermoplastic Prepreg Lay-up -- 4.2.5 Thermoplastic Tape Winding -- 4.2.6 Thermoplastic Pultrusion -- 4.2.7 Diaphragm Forming -- 4.2.8 Classification of Thermoplastic Composite Manufacturing Techniques -- 4.3 Thermosetting Polymer Composites -- 4.3.1 Hand Lamination -- 4.3.2 Spray-Up -- 4.3.3 Centrifugal Casting -- 4.3.4 Prepreg Lay-Up -- 4.3.5 Resin Transfer Molding and Vacuum-Assisted Resin Transfer Molding -- 4.3.6 Bulk Molding Compound and Sheet Molding Compound -- 4.3.7 Reaction Injection Molding and Structural Reaction Injection Molding -- 4.3.8 Thermosetting Injection Molding -- 4.3.9 Filament Winding -- 4.3.10 Pultrusion -- 4.3.11 Classification of Thermosetting Composite Manufacturing Techniques -- 4.4 Future Trends -- References -- Part Two: Macrosystems: Fiber-Reinforced Polymer Composites -- 5 Carbon Fiber-Reinforced Polymer Composites: Preparation, Properties, and Applications -- 5.1 Introduction -- 5.2 Backgrounds -- 5.2.1 Manufacturing Processes -- 5.2.2 Surface Treatment -- 5.2.2.1 Surface Treatment of Carbon Fibers -- 5.2.3 Characterization of Polymeric Composites -- 5.2.4 Fiber Reinforcements -- 5.3 Experimental Part -- 5.3.1 Materials -- 5.3.2 Surface Treatment of Carbon Fibers -- 5.3.2.1 Electrochemical Oxidation -- 5.3.2.2 Electroplating -- 5.3.2.3 Oxyfluorination -- 5.3.2.4 Plasma Modification -- 5.3.3 Preparation of Carbon Fiber-Reinforced Polymer Composites -- 5.3.4 Characterization of Carbon Fibers -- 5.3.5 Theoretical Considerations of Dynamic Contact Angles -- 5.3.6 Characterization of Carbon Fiber-Reinforced Polymer Composites -- 5.3.6.1 Interlaminar Shear Strength -- 5.3.6.2 Critical Stress Intensity Factor (KIC) -- 5.3.6.3 Mode I Interlaminar Fracture Toughness Factor -- 5.3.6.4 Fracture Behaviors.

5.4 Results and Discussion -- 5.4.1 Effect of Electrochemical Oxidation -- 5.4.1.1 Surface Characteristics -- 5.4.1.2 Contact Angle and Surface Free Energy -- 5.4.1.3 Mechanical Interfacial Properties -- 5.4.2 Effect of Electroplating -- 5.4.2.1 Surface Characteristics -- 5.4.2.2 Contact Angle and Surface Free Energy -- 5.4.2.3 Mechanical Interfacial Properties -- 5.4.3 Effect of Oxyfluorination -- 5.4.3.1 Surface Characteristics -- 5.4.3.2 Contact Angle and Surface Free Energy -- 5.4.3.3 Mechanical Interfacial Properties -- 5.4.4 Effect of Plasma Treatment -- 5.4.4.1 Surface Characteristics -- 5.4.4.2 Contact Angle and Surface Free Energy -- 5.4.4.3 Mechanical Interfacial Properties -- 5.5 Applications -- 5.5.1 Automotives -- 5.5.2 Wind Energy -- 5.5.3 Deepwater Offshore Oil and Gas Production -- 5.5.4 Electricity Transmission -- 5.5.5 Commercial Aircraft -- 5.5.6 Civil Infrastructure -- 5.5.7 Other Applications -- 5.6 Conclusions -- References -- 6 Glass Fiber-Reinforced Polymer Composites -- 6.1 Introduction -- 6.2 Chemical Composition and Types -- 6.2.1 Chemical Structure of Glass -- 6.2.2 Glass Fiber Types -- 6.3 Fabrication of Glass Fibers -- 6.3.1 Fiber Production -- 6.3.2 Sizing Application -- 6.4 Forms of Glass Fibers -- 6.4.1 Commercially Available Forms of Glass Fibers -- 6.4.2 Shaped Glass Fibers -- 6.5 Glass Fiber Properties -- 6.5.1 General Properties -- 6.5.2 Elastic Properties -- 6.5.3 Strength and Elongation Properties -- 6.5.4 Corrosion Properties -- 6.5.5 Thermal Properties -- 6.6 Glass Fibers in Polymer Composites -- 6.6.1 Polymers for Glass Fiber-Reinforced Composites -- 6.6.2 Determination of Properties -- 6.6.3 Manufacturing Processes and Related Composite Properties -- 6.6.4 Strength and Fatigue Properties -- 6.6.5 Strain Rate Effect in Glass Fiber-Reinforced Composites -- 6.6.6 Environmental Influences.

6.6.7 Other Physical Properties of Glass Fiber-Reinforced Composites -- 6.7 Applications -- 6.8 Summary -- References -- 7 Kevlar Fiber-Reinforced Polymer Composites -- 7.1 Introduction -- 7.2 Fiber-Reinforced Polymer Composites -- 7.3 Constituents of Polymer Composites -- 7.3.1 Synthetic Fibers -- 7.4 Kevlar Fiber -- 7.4.1 Development and Molecular Structure of Kevlar -- 7.4.2 Properties of Kevlar Fibers -- 7.5 Interface -- 7.6 Factors Influencing the Composite Properties -- 7.6.1 Strength, Modulus, and Chemical Stability of the Fiber and the Polymer Matrix -- 7.6.2 Influence of Fiber Orientation and Volume Fraction -- 7.6.2.1 Fiber Orientation in Injection Molded Fiber-Reinforced Composites -- 7.6.3 Volume Fraction -- 7.6.4 Influence of Fiber Length -- 7.6.5 Influence of Voids -- 7.6.6 Influence of Coupling Agents -- 7.7 Surface Modification -- 7.7.1 Surface Modification of Fibers -- 7.7.2 Surface Modification of Matrix Polymers -- 7.7.3 Fluorination and Oxy.uorination as Polymer Surface Modification Tool -- 7.8 Synthetic Fiber-Reinforced Composites -- 7.9 Effect of Fluorinated and Oxyfluorinated Short Kevlar Fiber on the Properties of Ethylene Propylene Matrix Composites -- 7.9.1 Preparation of Composites -- 7.9.2 FTIR Study -- 7.9.3 X-Ray Study -- 7.9.4 Thermal Properties -- 7.9.5 Dynamic Mechanical Thermal Analysis (DMTA) -- 7.9.6 Mechanical Properties -- 7.9.7 SEM Study -- 7.9.8 AFM Study -- 7.9.9 Conclusion -- 7.10 Compatibilizing Effect of MA-g-PP on the Properties of Fluorinated and Oxyfluorinated Kevlar Fiber-Reinforced Ethylene Polypropylene Composites -- 7.10.1 Preparation of the Composites -- 7.10.2 Thermal Properties -- 7.10.3 X-Ray Study -- 7.10.4 Dynamic Mechanical Thermal Analysis -- 7.10.5 Flow Behavior -- 7.10.6 SEM Study -- 7.10.7 Conclusion.

7.11 Properties of Syndiotactic Polystyrene Composites with Surface-Modified Short Kevlar Fiber.
Abstract:
The first systematic reference on the topic with an emphasis on the characteristics and dimension of the reinforcement. This first of three volumes, authored by leading researchers in the field from academia, government, industry, as well as private research institutions around the globe, focuses on macro and micro composites. Clearly divided into three sections, the first offers an introduction to polymer composites, discussing the state of the art, new challenges, and opportunities of various polymer composite systems, as well as preparation and manufacturing techniques. The second part looks at macro systems, with an emphasis on fiber reinforced polymer composites, textile composites, and polymer hybrid composites. Likewise, the final section deals with micro systems, including micro particle reinforced polymer composites, the synthesis, surface modification and characterization of micro particulate fillers and flakes as well as filled polymer micro composites, plus applications and the recovery, recycling and life cycle analysis of synthetic polymeric composites.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: