Cover image for Supramolecular Polymer Chemistry.
Supramolecular Polymer Chemistry.
Title:
Supramolecular Polymer Chemistry.
Author:
Harada, Akira.
ISBN:
9783527639809
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (392 pages)
Contents:
Supramolecular Polymer Chemistry -- Contents -- Preface -- List of Contributors -- Part One: Formation of Supramolecular Polymers -- 1 Multiple Hydrogen-Bonded Supramolecular Polymers -- 1.1 Introduction -- 1.1.1 Historical Background -- 1.1.2 Supramolecular Chemistry -- 1.1.3 Supramolecular Polymerization Mechanisms -- 1.2 General Concepts of Hydrogen-Bonding Motifs -- 1.2.1 Arrays of Multiple Hydrogen Bonds -- 1.2.2 Preorganization through Intramolecular Hydrogen Bonding -- 1.2.3 Tautomeric Equilibria -- 1.3 Hydrogen-Bonded Main-Chain Supramolecular Polymers -- 1.3.1 The Establishment of Supramolecular Polymers -- 1.3.2 Supramolecular Polymerizations -- 1.3.3 Hydrophobic Compartmentalization -- 1.4 From Supramolecular Polymers to Supramolecular Materials -- 1.4.1 Thermoplastic Elastomers -- 1.4.2 Phase Separation and Additional Lateral Interactions in Supramolecular Polymers in the Solid State -- 1.4.3 Supramolecular Thermoplastic Elastomers Based on Additional Lateral Interactions and Phase Separation -- 1.5 Future Perspectives -- References -- 2 Cyclodextrin-Based Supramolecular Polymers -- 2.1 Introduction -- 2.2 Supramolecular Polymers in the Solid State -- 2.2.1 Crystal Structures of CD Aliphatic Tethers -- 2.2.2 Crystal Structures of β-CDs Aromatic Tethers -- 2.3 Formation of Homo-Intramolecular and Intermolecular Complexes by CDs-Guest Conjugates -- 2.3.1 Supramolecular Structures Formed by 6-Modified α-CDs -- 2.3.2 Supramolecular Structures Formed by 6-Modified β-CDs 39 -- 2.3.3 Supramolecular Structures Formed by 3-Modified α-CDs -- 2.3.4 Hetero-Supramolecular Structures Formed by Modified CDs -- 2.4 Formation of Intermolecular Complexes by CD and Guest Dimers -- 2.5 Artificial Molecular Muscle Based on c2-Daisy Chain -- 2.6 Conclusion and Outlook -- References.

3 Supra-Macromolecular Chemistry: Toward Design of New Organic Materials from Supramolecular Standpoints -- 3.1 Introduction -- 3.2 Small Molecules, Macromolecules, and Supramolecules: Design of their Composite Materials -- 3.2.1 Interactions between Small Molecules and Macromolecules -- 3.2.2 Interactions between Small Molecules and Molecular Assemblies -- 3.2.3 Interactions between Molecular Assemblies -- 3.2.4 Interactions between Macromolecules -- 3.2.5 Interactions between Macromolecular Assemblies -- 3.2.6 Interactions between Macromolecules and Molecular Assemblies -- 3.3 Conclusion and Outlook -- References -- 4 Polymerization with Ditopic Cavitand Monomers -- 4.1 Introduction -- 4.2 Cavitands -- 4.3 Self-Assembly of Ditopic Cavitand Monomers -- 4.3.1 Structural Monomer Classification of Supramolecular Polymerization -- 4.3.2 Homoditopic Cavitands Self-Assembled via Solvophobic π-π Stacking Interactions -- 4.3.3 Heteroditopic Cavitands Combining Solvophobic Interactions and Metal-Ligand Coordination -- 4.3.4 Heteroditopic Cavitands Combining Solvophobic Interactions and Hydrogen Bonding -- 4.3.5 Heteroditopic Cavitands Self-assembled via Host-Guest Interactions -- 4.3.6 Homoditopic Cavitands Self-assembled via Host-Guest Interactions -- 4.4 Conclusions and Outlook -- References -- Part Two: Supramolecular Polymers with Unique Structures -- 5 Polymers Containing Covalently Bonded and Supramolecularly Attached Cyclodextrins as Side Groups -- 5.1 Polymers with Covalently Bonded Cyclodextrins as Side Groups -- 5.1.1 Synthesis and Polymerization of Monofunctional Cyclodextrin Monomers -- 5.1.2 Polymer-Analogous Reaction with Monofunctional Cyclodextrin -- 5.1.3 Structure-Property Relationship of Polymers Containing Cyclodextrins as Side Group -- 5.2 Side Chain Polyrotaxanes and Polypseudorotaxanes -- 5.2.1 Side Chain Polyrotaxanes.

5.2.2 Side Chain Polypseudorotaxane (Polymer (Polyaxis)/ Cyclodextrin (Rotor)) -- References -- 6 Antibody Dendrimers and DNA Catenanes -- 6.1 Molecular Recognition in Biological Systems -- 6.1.1 Supramolecular Complex Formation of Antibodies -- 6.1.2 Supramolecular Complexes Prepared by DNAs -- 6.1.3 Observation of Topological Structures of Supramolecular Complexes by Atomic Force Microscopy (AFM) -- 6.2 Antibody Supramolecules -- 6.2.1 Structural Properties of Individual Antibody Molecules -- 6.2.2 Supramolecular Formation of Antibodies with Multivalent Antigens -- 6.2.2.1 Supramolecular Formation of Antibodies with Divalent Antigens -- 6.2.2.2 Direct Observation of Supramolecular Complexes of Antibodies with Porphyrin Dimers -- 6.2.2.3 Applications for the Highly Sensitive Detection Method of Small Molecules by the Supramolecular Complexes between Antibodies and Multivalent Antigens -- 6.2.3 Supramolecular Dendrimers Constructed by IgM and Chemically Modified IgG -- 6.2.3.1 Preparation of Antibody Dendrimers and their Topological Structures -- 6.2.3.2 Binding Properties of Antibody Dendrimers for Antigens -- 6.3 DNA Supramolecules -- 6.3.1 Imaging of Individual Plasmid DNA Molecules -- 6.3.2 Preparation of Nicked DNA by the Addition of DNase I to Plasmid DNA -- 6.3.3 Catenation Reaction with Topoisomerase I -- 6.3.4 AFM Images of DNA Catenanes -- 6.3.5 DNA [n]Catenanes Prepared by Irreversible Reaction with DNA Ligase -- 6.4 Conclusions -- References -- 7 Crown Ether-Based Polymeric Rotaxanes -- 7.1 Introduction -- 7.2 Daisy Chains -- 7.3 Supramolecular Polymers -- 7.4 Dendritic Rotaxanes -- 7.5 Dendronized Polymers -- 7.6 Main chain Rotaxanes Based on Polymeric Crowns (Including Crosslinked Systems) -- 7.7 Side Chain Rotaxanes Based on Pendent Crowns -- 7.8 Poly[2]rotaxanes -- 7.9 Poly[3]rotaxanes -- 7.10 Polymeric End Group Pseudorotaxanes.

7.11 Chain Extension and Block Copolymers from End Groups -- 7.12 Star Polymers from Crown Functionalized Polymers -- References -- Part Three: Properties and Functions -- 8 Processive Rotaxane Catalysts -- 8.1 Introduction -- 8.2 Results and Discussion -- 8.2.1 Catalysis -- 8.2.2 Threading -- 8.3 Conclusion -- References -- 9 Emerging Biomedical Functions through 'Mobile' Polyrotaxanes -- 9.1 Introduction -- 9.2 Multivalent Interaction using Ligand-Conjugated Polyrotaxanes -- 9.3 The Formation of Polyrotaxane Loops as a Dynamic Interface -- 9.4 Cytocleavable Polyrotaxanes for Gene Delivery -- 9.5 Conclusion -- 9.6 Appendix -- References -- 10 Slide-Ring Materials Using Polyrotaxane -- 10.1 Introduction -- 10.2 Pulley Effect of Slide-Ring Materials -- 10.3 Synthesis of Slide-Ring Materials -- 10.4 Scattering Studies of Slide-Ring Gels -- 10.5 Mechanical Properties of Slide-Ring Gels -- 10.6 Sliding Graft Copolymers -- 10.7 Recent Trends of Slide-Ring Materials -- 10.7.1 Introduction: Diversification of the Main Chain Polymer -- 10.7.2 Organic-Inorganic Hybrid Slide-Ring Materials -- 10.7.3 Design of Materials from Intramolecular Dynamics of Polyrotaxanes -- 10.8 Concluding Remarks -- References -- 11 Stimuli-Responsive Systems -- 11.1 Introduction -- 11.2 Stimuli and Responses -- 11.2.1 Stimuli -- 11.2.1.1 Temperature -- 11.2.1.2 Pressure, Force, Stress, and Ultrasound -- 11.2.1.3 pH -- 11.2.1.4 Chemicals -- 11.2.1.5 Electromagnetic Waves or Light -- 11.2.1.6 Redox -- 11.2.2 Responses -- 11.2.2.1 Movement -- 11.2.2.2 Capture and Release of Chemicals -- 11.2.2.3 Chemical Reactions -- 11.2.2.4 Change in Viscoelastic Properties, or Gel-to-Sol and Sol-to-Gel Transitions -- 11.2.2.5 Change in Color -- 11.3 Examples of Stimuli-Responsive Supramolecular Polymer Systems -- 11.3.1 Temperature-Responsive Systems.

11.3.2 Pressure-, Force-, and Sonication-Responsive Systems -- 11.3.3 pH-Responsive Systems -- 11.3.4 Chemical-Responsive Systems -- 11.3.5 Photo-Responsive Systems -- 11.3.6 Redox-Responsive Systems -- 11.3.7 Multi-Stimuli-Responsive Systems -- 11.4 Concluding Remarks -- References -- 12 Physical Organic Chemistry of Supramolecular Polymers -- 12.1 Introduction and Background -- 12.2 Linear Supramolecular Polymers -- 12.2.1 N,C,N-Pincer Metal Complexes -- 12.2.2 Linear SPs -- 12.2.3 Theory Related to the Properties of Linear SPs -- 12.2.4 Linear SPs in the Solid State -- 12.3 Cross-Linked SPs Networks -- 12.3.1 Reversibility in Semidilute Unentangled SPs Networks -- 12.3.2 Properties of Semidilute Entangled SPs Networks -- 12.3.3 The Sticky Reptation Model -- 12.4 Hybrid Polymer Gels -- 12.5 Conclusion -- References -- 13 Topological Polymer Chemistry: A Quest for Strange Polymer Rings -- 13.1 Introduction -- 13.2 Systematic Classification of Nonlinear Polymer Topologies -- 13.3 Topological Isomerism -- 13.4 Designing Unusual Polymer Rings by Electrostatic Self-Assembly and Covalent Fixation -- 13.5 Conclusion and Future Perspectives -- References -- 14 Structure and Dynamic Behavior of Organometallic Rotaxanes -- 14.1 Introduction -- 14.1.1 Crystals of Pseudorotaxanes -- 14.1.2 Synthesis of Ferrocene-Containing [2]Rotaxanes by the Threading-Followed-by-End-Capping Strategy -- 14.1.3 Dethreacting Reaction of Rotaxane-Like Complex -- 14.1.4 Photochemical Properties of Ferrocene-Containing Rotaxanes -- 14.1.5 Ferrocene-Containing [3]Rotaxane and Side-Chain Polyrotaxane -- 14.1.5.1 Strategies and Synthesis of [3]Rotaxanes -- 14.1.5.2 Strategies and Synthesis of Side-Chain Type Polyrotaxane -- 14.2 Conclusion -- 14.3 Appendix: Experimental Section -- References -- 15 Polyrotaxane Network as a Topologically Cross-Linked Polymer: Synthesis and Properties.

15.1 Introduction.
Abstract:
Presenting the work of pioneering experts in this exciting field of supramolecular polymer chemistry, this monograph covers an extensive range of applications, including drug delivery and catalysis. It focuses on new structures and phenomena of cyclodextrin-based supramolecular polymers and many other compound classes. While providing a deeper insight in macromolecular recognition and the mechanisms of living systems, this book also introduces fascinating novel phenomena beyond natural systems.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: