Cover image for Digital Holography.
Digital Holography.
Title:
Digital Holography.
Author:
Picart, Pascal.
ISBN:
9781118563205
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (306 pages)
Series:
Iste
Contents:
Title Page -- Contents -- Introduction -- Chapter 1. Mathematical Prerequisites -- 1.1. Frequently used special functions -- 1.1.1. The "rectangle" function -- 1.1.2. The "sinc" function -- 1.1.3. The "sign" function -- 1.1.4. The "triangle" function -- 1.1.5. The "disk" function -- 1.1.6. The Dirac δ function -- 1.1.6.1. Definition -- 1.1.6.2. Fundamental properties -- 1.1.7. The "comb" function -- 1.2. Two-dimensional Fourier transform -- 1.2.1. Definition and existence conditions -- 1.2.2. Theorems related to the Fourier transform -- 1.2.2.1. Linearity -- 1.2.2.2. Similarity -- 1.2.2.3. Translation -- 1.2.2.4. Parseval's theorem -- 1.2.2.5. The convolution theorem -- 1.2.2.6. The autocorrelation theorem -- 1.2.2.7. The duality theorem -- 1.2.3. Fourier transforms in polar coordinates -- 1.3. Linear systems -- 1.3.1. Definition -- 1.3.2. Impulse response and superposition integrals -- 1.3.3. Definition of a two-dimensional linear shift-invariant system -- 1.3.4. Transfer functions -- 1.4. The sampling theorem -- 1.4.1. Sampling a continuous function -- 1.4.2. Reconstruction of the original function -- 1.4.3. Space-bandwidth product -- Chapter 2. The Scalar Theory of Diffraction -- 2.1. Representation of an optical wave by a complex function -- 2.1.1. Representation of a monochromatic wave -- 2.1.2. Complex amplitude of the optical field in space -- 2.1.2.1. Plane waves -- 2.1.2.2. Spherical waves -- 2.1.3. Complex amplitudes of plane and spherical waves in a front plane -- 2.1.3.1. Complex amplitude of a plane wave in a front plane -- 2.1.3.2. Complex amplitude of a spherical wave in a front plane -- 2.2. Scalar theory of diffraction -- 2.2.1. Wave equation -- 2.2.2. Harmonic plane wave solutions to the wave equation -- 2.2.3. Angular spectrum.

2.2.4. Kirchhoff and Rayleigh-Sommerfeld formulae -- 2.2.5. Fresnel approximation and Fresnel diffraction integral -- 2.2.6. The Fraunhofer approximation -- 2.3. Examples of Fraunhofer diffraction patterns -- 2.3.1. Fraunhofer diffraction pattern from a rectangular aperture -- 2.3.2. Fraunhofer diffraction pattern from a circular aperture -- 2.3.3. Fraunhofer diffraction pattern from a sinusoidal-amplitude grating -- 2.4. Some examples and uses of Fresnel diffraction -- 2.4.1. Fresnel diffraction from a sinusoidal-amplitude grating -- 2.4.2. Fresnel diffraction from a rectangular aperture -- 2.5. Collins' formula -- 2.5.1. Description of an optical system by an ABCD transfer matrix -- 2.5.2. ABCD law and paraxial systems equivalent to a lens -- 2.5.2.1. ABCD law of a spherical wave propagating across an optical system -- 2.5.2.2. System equivalent to a lens -- 2.5.2.3. Properties of the transfer matrix -- 2.5.3. Proof of Collins' formula -- 2.5.3.1. Transmission from a thin lens -- 2.5.3.2. Expression of the ideal image -- 2.5.3.3. Proof of Collins' formula -- 2.5.4. Comparison between Collins' formula and the Fresnel integral -- 2.6. Conclusion -- Chapter 3. Calculating Diffraction by Fast Fourier Transform -- 3.1. Relation between the discrete and analytical Fourier transforms -- 3.1.1. Sampling and periodic expansion of a continuous two-dimensional function -- 3.1.2. The relation between the discrete and continuous Fourier transforms -- 3.2. Calculating the Fresnel diffraction integral by FFT -- 3.2.1. Calculating diffraction by the S-FFT method -- 3.2.2. Numerical calculation and experimental demonstration -- 3.2.3. The D-FFT method -- 3.2.4. Practical sampling conditions due to the energy conservation principle -- 3.2.5. Experimental demonstration of the D-FFT method.

3.3. Calculation of the classical diffraction formulae using FFT -- 3.3.1. Kirchhoff and Rayleigh-Sommerfeld formulae in convolution form -- 3.3.2. Unitary representation of the classical diffraction formulae -- 3.3.3. Study of the sampling conditions of the classical formulae -- 3.3.4. Example of calculations of the classical diffraction formulae -- 3.3.5. Calculation of diffraction by convolution: summary -- 3.4. Numerical calculation of Collins' formula -- 3.4.1. Collin's direct and inverse formulae -- 3.4.2. Calculating Collins' formula by S-FFT -- 3.4.3. Calculating the inverse Collins' formula by S-FFT -- 3.4.4. Calculating Collins' formula by D-FFT -- 3.4.5. Calculating the inverse Collins' formula by D-FFT -- 3.4.6. Numerical calculation and experimental demonstration -- 3.4.6.1. Demonstration of the S-FFT and S-IFFT methods -- 3.4.6.2. Demonstration of the D-FFT method -- 3.5. Conclusion -- Chapter 4. Fundamentals of Holography -- 4.1. Basics of holography -- 4.1.1. Leith-Upatnieks holograms -- 4.1.1.1. Illumination in the propagation direction of the original reference wave -- 4.1.1.2. Illumination with a wave propagating along the z-axis -- 4.1.2. Condition for the separation of the twin images and the zero order -- 4.1.2.1. Case where the reference wave is planar -- 4.1.2.2. The case where the reference wave is no longer planar -- 4.2. Partially coherent light and its use in holography -- 4.2.1. Analytic signal describing a non-monochromatic wave -- 4.2.1.1. Analytic signal describing a monochromatic wave -- 4.2.1.2. Analytic signal describing a non-monochromatic wave -- 4.2.1.3. Analytic signal and spectrum of a laser wave -- 4.2.2. Recording a hologram with non-monochromatic light -- 4.2.3. Total coherence approximation conditions -- 4.2.3.1. Identical wave train model.

4.2.3.2. Temporal coherence of a source emitting identical wave trains -- 4.2.4. Recording a Fresnel hologram -- 4.3. Study of the Fresnel hologram of point source -- 4.3.1. Reconstructing the hologram of a point source -- 4.3.1.1. Hologram illuminated by a spherical wave with the same wavelength -- 4.3.1.2. Hologram illuminated by a spherical wave with a different wavelength -- 4.3.1.3. Case where the reference and reconstruction waves are plane waves -- 4.3.2. Magnifications -- 4.3.2.1. Transverse magnification of the reconstructed image -- 4.3.2.2. Longitudinal magnification -- 4.3.3. Resolution of the reconstructed image -- 4.3.3.1. Influence of the size of the illuminating source -- 4.3.3.2. Influence of the spectral width of the light source -- 4.4. Different types of hologram -- 4.4.1. The Fraunhofer hologram -- 4.4.2. The Fourier hologram -- 4.4.2.1. Component Cũ1(xi, yi) -- 4.4.2.2. Component Cũ2(xi, yi) -- 4.4.2.3. Component Cũ3(xi, yi) -- 4.4.2.4. Component Cũ4(xi, yi) -- 4.4.3. The lensless Fourier hologram -- 4.4.4. The image hologram -- 4.4.5. The phase hologram -- 4.5. Conclusion -- Chapter 5. Digital Off-Axis Fresnel Holography -- 5.1. Digital off-axis holography and wavefront reconstruction by S-FFT -- 5.1.1. Characteristics of the diffraction from a digital hologram impacted by a spherical wave -- 5.1.1.1. Virtual object -- 5.1.1.2. Conjugate object -- 5.1.1.3. Zero order -- 5.1.2. Optimization of the experimental parameters -- 5.1.3. Experimental reconstruction by S-FFT -- 5.1.4. Quality of the reconstructed image -- 5.2. Elimination of parasitic orders with the S-FFT method -- 5.2.1. Diffraction efficiency of a digital hologram -- 5.2.2. Methods of direct elimination -- 5.2.2.1. Method directly eliminating the object and reference waves.

5.2.2.2. Method with an arbitrary phase shift of the reference wave -- 5.2.3. Method of extracting the complex amplitude of the object wave -- 5.3. Wavefront reconstruction with an adjustable magnification -- 5.3.1. Convolution with adjustable magnification -- 5.3.2. Experiment with adjustable magnification -- 5.3.3. Elimination of the perturbation due to the zero order -- 5.3.3.1. Spectral distribution and determination of the center of the object wave -- 5.3.3.2. Spectral position of the object wave -- 5.3.4. Method eliminating the perturbation due to the zero order -- 5.4. Filtering in the image and reconstruction planes by the FIMG4FFT method -- 5.4.1. Adjustable magnification reconstruction by the FIMG4FFT method -- 5.4.1.1. Filtering the image plane -- 5.4.1.2. Experimental results -- 5.4.1.3. Local reconstruction by the FIMG4FFT method -- 5.5. DBFT method and the use of filtering in the image plane -- 5.5.1. DBFT method -- 5.5.2. Sampling of the DBFT algorithm -- 5.5.3. Improvement of the DBFT method -- 5.5.4. Experimental demonstration of the DDBFT method -- 5.6. Digital color holography -- 5.6.1. Recording a digital color hologram -- 5.6.2. Standardization of the physical scale of reconstructed monochromatic images -- 5.6.3. Fresnel transform with wavelength-dependant zero-padding -- 5.6.4. Experimental study of the different methods of reconstructing color images -- 5.6.4.1. Two-color image calculated by the zero-padding method -- 5.6.4.2. Reconstruction by the FIMG4FFT and the DDBFT with adjustable magnification -- 5.6.4.3. Three-color digital holography -- 5.7. Digital phase hologram -- 5.7.1. Formation of a digital phase hologram and reconstruction by S-FFT -- 5.7.2. Experimental demonstration -- 5.8. Depth of focus of the reconstructed image -- 5.8.1. Theoretical analysis.

5.8.2. Comparison with a digital holographic simulation.
Abstract:
Introduction xv Chapter 1. Mathematical Prerequisites 1 Chapter 2. The Scalar Theory of Diffraction 27 Chapter 3. Calculating Diffraction by Fast Fourier Transform 77 Chapter 4. Fundamentals of Holography 115 Chapter 5. Digital Off-Axis Fresnel Holography 165 Chapter 6. Reconstructing Wavefronts Propagated through an Optical System 237 Chapter 7. Digital Holographic Interferometry and Its Applications 271 Appendix. Examples of Digital Hologram Reconstruction Programs 319 Bibliography 339 Index 355.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: