Cover image for Mathematical Foundations of Image Processing and Analysis.
Mathematical Foundations of Image Processing and Analysis.
Title:
Mathematical Foundations of Image Processing and Analysis.
Author:
Pinoli, Jean-Charles.
ISBN:
9781118649114
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (456 pages)
Series:
ISTE
Contents:
Cover -- Title Page -- Copyright -- Contents -- Preface -- Introduction -- Elements of Mathematical Terminology -- Part 1. An Overview of Image Processing and Analysis (IPA) -- Chapter 1. Gray-Tone Images -- 1.1. Intensity images, pixels and gray tones -- 1.2. Scene, objects, context, foreground and background -- 1.3. Simple intensity image formation process models -- 1.3.1. The multiplicative image formation process model -- 1.3.2. The main human brightness perception laws -- 1.4. The five main requirements for a relevant imaging approach -- 1.5. Additional comments -- Chapter 2. Gray-Tone Image Processing and Analysis -- 2.1. Image processing -- 2.1.1. Image enhancement -- 2.1.2. Image restoration -- 2.1.3. Image inpainting -- 2.1.4. Image warping, registration and morphing -- 2.2. Image analysis -- 2.2.1. Image features -- 2.2.2. Image feature detection and extraction -- 2.2.3. Image segmentation -- 2.3. Image comparison -- 2.3.1. Image pattern analysis, recognition and formation -- 2.3.2. Image quality measure -- 2.4. Importance of Human Vision -- 2.5. Additional comments -- Chapter 3. Binary Images -- 3.1. Scene, objects and context -- 3.1.1. Types of collection of objects -- 3.1.2. Types of perturbations -- 3.2. Binary and multinary images -- 3.2.1. Binary images -- 3.2.2. Multinary images -- 3.3. Additional comments -- Chapter 4. Binary Image Processing and Analysis -- 4.1. Binary image processing -- 4.1.1. Binary image processing methods -- 4.2. Binary image analysis -- 4.2.1. Object feature detection and extraction -- 4.3. Binary image and object description -- 4.3.1. Binary image and object descriptors -- 4.3.2. Properties of the binary image and object descriptor -- 4.4. Object comparison -- 4.5. Object analysis, recognition and formation -- 4.5.1. Object recognition -- 4.5.2. Object formation.

4.6. Additional comments -- Chapter 5. Key Concepts and Notions for IPA -- 5.1. Dimensionality -- 5.1.1. Dimension in Physics -- 5.1.2. Dimension in Mathematics -- 5.1.3. Dimension in imaging sciences and technologies -- 5.2. Continuity and discreteness -- 5.3. Scale, resolution and definition -- 5.3.1. Scale -- 5.3.2. Resolution -- 5.3.3. Image definition -- 5.4. Domains -- 5.5. Ranges -- 5.5.1. Pointwise ranges -- 5.5.2. Local ranges -- 5.5.3. Global ranges -- 5.5.4. Constrained ranges -- 5.6. Additional comments -- Chapter 6. Mathematical Imaging Frameworks -- 6.1. Mathematical imaging frameworks -- 6.1.1. Mathematical imaging paradigms -- 6.1.2. Mathematical imaging frameworks -- 6.1.3. Mathematical imaging approaches -- 6.2. Image representation and image modeling -- 6.2.1. Imaging representation -- 6.2.2. Imaging modeling -- 6.3. A mathematical imaging methodology -- 6.4. Additional comments -- Part 2. Basic Mathematical Reminders for Gray-Tone and Binary Image Processing and Analysis -- Chapter 7. Basic Reminders in Set Theory -- 7.1. Mathematical disciplines -- 7.2. Sets and elements -- 7.2.1. Membership -- 7.2.2. Relations and operations between sets -- 7.2.3. Power sets -- 7.3. Order and equivalence relations on sets -- 7.3.1. Order relations on sets -- 7.3.2. Lattices and complete lattices -- 7.3.3. Equivalence relations on sets -- 7.4. Mappings between sets -- 7.5. Mapping composition, involutions, and idempotent mappings -- 7.5.1. Fixed elements of a mapping -- 7.5.2. Injections, surjections and bijections -- 7.5.3. Single-valued mappings, multivalued mappings and correspondences -- 7.5.4. Monotonic mappings between ordered sets -- 7.6. Cardinality -- 7.7. Cover -- 7.8. Additional comments -- Chapter 8. Basic Reminders in Topology and Functional Analysis -- 8.1. Mathematical disciplines.

8.2. Topological spaces -- 8.2.1. Neighborhood systems -- 8.2.2. Open and closed sets, interiors, closures and boundaries -- 8.2.3. Kuratowski's closure axioms -- 8.2.4. Topologies and topological bases -- 8.2.5. Continuous mappings, homeomorphisms and embeddings -- 8.2.6. Topological separations -- 8.3. Metric spaces -- 8.3.1. Metrics -- 8.3.2. Balls -- 8.3.3. Convergent sequences -- 8.3.4. Complete metric spaces -- 8.3.5. Uniform continuity -- 8.3.6. Lipschitz mappings -- 8.3.7. Hölder mappings -- 8.3.8. Equivalence of metrics -- 8.3.9. Distance-preserving mapping and isometries -- 8.3.10. Locally bounded mapping -- 8.4. Some particular kinds of points in topological and metric spaces -- 8.5. Some particular kinds of subsets in topological and metric spaces -- 8.5.1. Dense and meagre sets -- 8.5.2. Connected and path-connected sets -- 8.5.3. Bounded sets -- 8.5.4. Chebyshev sets -- 8.6. Some particular topological spaces -- 8.6.1. Compact spaces -- 8.6.2. Separable spaces -- 8.6.3. Baire spaces -- 8.6.4. Polish spaces -- 8.6.5. Alexandrov spaces -- 8.7. Lipschitz and Gromov-Hausdorff distances -- 8.7.1. Distortion of a mapping and a correspondence -- 8.7.2. Lipschitz distances -- 8.7.3. Gromov-Hausdorff distances -- 8.7.4. Lipschitz and Gromov-Hausdorff convergences -- 8.8. Topological vector spaces -- 8.8.1. Vector spaces -- 8.8.2. Vector algebras -- 8.8.3. General topological vector spaces -- 8.8.4. Normed vector spaces and Banach spaces -- 8.8.5. Inner vector spaces, Euclidean spaces and Hilbert spaces -- 8.8.6. Operators -- 8.8.7. Reflexive topological vector spaces -- 8.8.8. Riesz-Fréchet's representation theorem -- 8.8.9. Lax-Milgram's theorem -- 8.8.10. Weak formulation of problems -- 8.8.11. Fréchet spaces -- 8.9. Additional comments.

Part 3. The Main Mathematical Notions for the Spatial and Tonal Domains -- Chapter 9. The Spatial Domain -- 9.1. Paradigms -- 9.2. Mathematical structures -- 9.3. Main approaches for IPA -- 9.3.1. Pixels -- 9.3.2. Pixels in the continuous setting -- 9.3.3. Pixels in the discrete setting -- 9.3.4. Point and cell discrete representations for pixels -- 9.4. Main applications to IPA -- 9.4.1. The continuous case -- 9.4.2. The discrete case and the adjacency relationships -- 9.5. Additional comments -- Chapter 10. The Tonal Domain -- 10.1. Paradigms -- 10.2. Mathematical concepts and structures -- 10.2.1. Mathematical disciplines -- 10.2.2. Gray tones -- 10.2.3. The tonal domains -- 10.2.4. Gray-tone vector space and algebra -- 10.2.5. Gray-tone norms and gray-tone inner products -- 10.2.6. Gray-tone order modulus -- 10.2.7. Gray-tone Riesz space -- 10.2.8. The gray-tone positive cone -- 10.3. Main approaches for IPA -- 10.3.1. Classical linear operations -- 10.3.2. General linear operations -- 10.3.3. The multiplicative homomorphic operations -- 10.3.4. The logarithmic-ratio operations -- 10.3.5. The logarithmic operations -- 10.3.6. The homomorphic logarithmic operations -- 10.3.7. The isomorphic definition of the product operation -- 10.4. Main applications for IPA -- 10.4.1. Tonal affinities -- 10.4.2. Monotonic tonal transformations -- 10.4.3. Positive tonal transformations -- 10.5. Additional comments -- Part 4. Ten Main Functional Frameworks for Gray Tone Images -- Chapter 11. The Algebraic and Order Functional Framework -- 11.1. Paradigms -- 11.2. Mathematical structures and notions for IPA -- 11.2.1. Gray-tone functions -- 11.2.2. The gray-tone function vector space and vector algebra -- 11.2.3. The gray-tone function vector lattice -- 11.2.4. The gray-tone function normed vector lattice.

11.2.5. Extended gray-tone functions -- 11.3. Main approaches for IPA -- 11.3.1. Classical linear image processing -- 11.3.2. General linear image processing -- 11.4. Main applications for IPA -- 11.4.1. Gray-tone image darkening and whitening -- 11.4.2. Gray-tone image dynamic range maximization -- 11.4.3. Gray-tone image denoising -- 11.4.4. Gray-tone function addition and physical superposition -- 11.4.5. Gray-tone function subtraction and physical dissociation -- 11.5. Additional comments -- Chapter 12. The Morphological Functional Framework -- 12.1. Paradigms -- 12.2. Mathematical concepts and structures -- 12.2.1. Mathematical disciplines -- 12.2.2. Local maxima and minima of a gray-tone function -- 12.2.3. Semi-continuity of extended gray-tone functions -- 12.2.4. Examples of semi-continuous gray-tone functions -- 12.3. Main approaches for IPA -- 12.3.1. Mathematical morphology -- 12.3.2. Morphological dilation and erosion -- 12.3.3. Morphological opening and closing -- 12.3.4. Functional structuring functions -- 12.3.5. Image rank filtering -- 12.4. Main applications for IPA -- 12.4.1. Edge detection -- 12.4.2. Image softening -- 12.4.3. Image segmentation -- 12.4.4. Rank filtering -- 12.5. Additional comments -- Chapter 13. The Integral Functional Framework -- 13.1. Paradigms -- 13.2. Mathematical structures -- 13.2.1. Mathematical disciplines -- 13.2.2. Lebesgue-Bochner gray-tone function spaces -- 13.2.3. Locally p-integrable gray-tone functions -- 13.3. Main approaches for IPA -- 13.3.1. Integral operators -- 13.3.2. Integral transformations -- 13.3.3. Lebesgue pixels -- 13.3.4. Orthogonality and correlation -- 13.3.5. Integral equations -- 13.4. Main applications for IPA -- 13.4.1. Image softening -- 13.4.2. Image hardening -- 13.5. Additional comments.

Chapter 14. The Convolutional Functional Framework.
Abstract:
Image processing and image analysis are typically important fields in information science and technology. By "image processing", we generally understand all kinds of operation performed on images (or sequences of images) in order to increase their quality, restore their original content, emphasize some particular aspect of the information or optimize their transmission, or to perform radiometric and/or spatial analysis. By "image analysis" we understand, however, all kinds of operation performed on images (or sequences of images) in order to extract qualitative or quantitative data, perform measurements and apply statistical analysis. Whereas there are nowadays many books dealing with image processing, only a small number deal with image analysis. The methods and techniques involved in these fields of course have a wide range of applications in our daily world: industrial vision, material imaging, medical imaging, biological imaging, multimedia applications, satellite imaging, quality control, traffic control, and so on.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: