Cover image for Polymer Nanotubes Nanocomposites : Synthesis, Properties and Applications.
Polymer Nanotubes Nanocomposites : Synthesis, Properties and Applications.
Title:
Polymer Nanotubes Nanocomposites : Synthesis, Properties and Applications.
Author:
Mittal, Vikas.
ISBN:
9781118945940
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (490 pages)
Series:
Wiley-Scrivener Ser.
Contents:
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Polymer Nanotube Nanocomposites: A Review of Synthesis Methods, Properties and Applications -- 1.1 Introduction -- 1.2 Methods of Nanotube Nanocomposites Synthesis -- 1.2.1 Direct Mixing -- 1.2.2 Solution Mixing -- 1.2.3 In-Situ Polymerization -- 1.2.4 Melt Mixing -- 1.3 Properties of Polymer Nanotube Nanocomposites -- 1.3.1 Mechanical Properties -- 1.3.2 Thermal Properties -- 1.3.3 Electrical Properties -- 1.3.4 Other Properties -- 1.4 Applications -- References -- 2 Functionalization Strategies for Single-Walled Carbon Nanotubes Integration into Epoxy Matrices -- 2.1 Introduction -- 2.1.1 SWCNTs in Composite Materials: The Case of Epoxy -- 2.1.2 The Processing and Functionalization of SWCNTs -- 2.2 Covalent Strategies for the Production of SWCNT/Epoxy Composites -- 2.2.1 Oxidation of SWCNTs -- 2.2.2 Functionalization with Terminal Amines -- 2.2.3 Functionalization with Terminal Oxirane Rings -- 2.2.4 Other Functional Groups -- 2.3 Non-covalent Strategies for the Production of SWCNT/Epoxy Composites -- 2.3.1 Adsorption of Reactive Species -- 2.3.2 Adsorption of Non-reactive Species -- 2.3.3 Dual-Affinity Adsorbed Species: The Use of Block Copolymers in SWCNT/Epoxy Composites -- 2.4 Effect of Functionalization on the Epoxy Physical Properties -- 2.4.1 Static and Dynamic Mechanical Properties -- 2.4.2 Thermal Behaviour and Stability -- 2.4.3 Electrical Conductivity and Percolation Phenomena -- 2.4.4 Combined Properties: Electromechanical Effects -- 2.4.5 Other Physical Properties -- 2.5 Applications of Functionalized SWCNTs in Epoxy Composites -- 2.6 Concluding Remarks and Future Outlook -- Acknowledgements -- References -- 3 Multiscale Modeling of Polymer-Nanotube Nanocomposites -- 3.1 Introduction -- 3.2 Molecular Modeling and Simulation of CNT-Polymer Nanocomposites.

3.2.1 Molecular Dynamics and Molecular Mechanics -- 3.2.2 Force Fields for CNTs and Engineering Polymers -- 3.2.3 Molecular Modeling and Simulation Procedures for CNT/Polymer Composites -- 3.3 Micromechanics Modeling and Simulation of CNT-Polymer Nanocomposites -- 3.3.1 Equivalent Inclusion Model -- 3.3.2 Mathematical Homogenization Model -- 3.3.3 Description of the Interphase Zone -- 3.3.4 Weakened Interface between CNT and Matrix -- 3.3.5 Effect of CNT Waviness -- 3.3.6 CNT Agglomeration -- 3.4 Fully Integrated Multiscale Model for Elastoplastic Behavior with Imperfect Interface -- 3.4.1 Hierarchical Integration of the Molecular Dynamics and Continuum Model -- 3.4.2 Two-Step Multiscale Model for the Elastoplastic Behavior of CNT-Polymer Composites -- 3.5 Conclusion and Perspective on Future Trends -- References -- 4 SEM and TEM Characterization of Polymer CNT Nanocomposites -- 4.1 Introduction -- 4.2 Imaging CNTs in Polymer Matrices by SEM -- 4.3 Mechanical Properties of CNT/Polymer Nanocomposites by In-Situ SEM -- 4.4 Imaging CNT in Polymer Matrices by TEM -- 4.5 Mechanical Properties of CNT/Polymer Nanocomposites by In-Situ TEM -- 4.6 Conclusions and Future Outlook -- Acknowledgement -- References -- 5 Polymer-Nanotube Nanocomposites for Transfemoral Sockets -- 5.1 Introduction -- 5.1.1 Major Components in Transfemoral and Transtibial Amputee -- 5.1.2 Evolution of the Socket System -- 5.1.3 Drawbacks of the Socket System -- 5.2 Materials Used for the Socket System -- 5.2.1 Fiber-Reinforced Composites for the Socket System -- 5.2.2 Epoxy Nanocomposites -- 5.2.3 FRP/CNTs Nanocomposites -- 5.2.4 Aligned CNT Nanocomposites -- 5.3 Summary -- Acknowledgements -- References -- 6 Micro-Patterning of Polymer Nanotube Nanocomposites -- 6.1 Introduction -- 6.2 Micro-Patterning Methods -- 6.2.1 Micromolding -- 6.2.2 Selective Surface Modification.

6.2.3 Light-Based Methods -- 6.2.4 Inkjet Printing -- 6.2.5 Other Methods -- 6.3 Conclusions -- Acknowledgments -- References -- 7 Carbon Nanotube-Based Hybrid Materials and Their Polymer Composites -- 7.1 Introduction -- 7.2 Structures and Properties of Carbon Nanomaterials -- 7.2.1 Fullerene -- 7.2.2 Carbon Nanotubes -- 7.2.3 Graphene Nanosheets -- 7.2.4 Graphene Nanoribbons -- 7.3 Strategies for the Hybridization of CNTs with Carbon Nanomaterials -- 7.3.1 CNT-Fullerene Hybrids -- 7.3.2 CNT-GNS Hybrids -- 7.3.3 CNT-GNR Hybrids -- 7.4 Preparation of CNT-Based Hybrid Reinforced Polymer Nanocomposites -- 7.4.1 Solution Casting -- 7.4.2 Melt Mixing -- 7.4.3 In-Situ Polymerization -- 7.4.4 Other Methods -- 7.5 Physical Properties of CNT-Based Hybrid Reinforced Polymer Nanocomposites -- 7.5.1 Mechanical Properties -- 7.5.2 Electrical Conductivity -- 7.5.3 Thermal Conductivity -- 7.6 Summary -- Acknowledgements -- References -- 8 Polymer-Carbon Nanotube Nanocomposite Foams -- 8.1 Introduction -- 8.2 Basic Concepts of Polymer Nanocomposite Foams -- 8.3 Main Polymer Nanocomposite Foaming Technologies -- 8.3.1 Continuous/Semi-continuous Foaming Processes -- 8.3.2 Batch Foaming Processes -- 8.4 Polymer-Carbon Nanotube Nanocomposite Foams -- 8.4.1 Types of Carbon Nanotubes and Production Methods -- 8.4.2 Properties of Polymer-Carbon Nanotube Nanocomposite Foams -- 8.5 Recent Developments and New Applications of Polymer- Carbon Nanotube Nanocomposite Foams -- 8.6 Conclusions -- Acknowledgements -- References -- 9 Processing and Properties of Carbon Nanotube/ Polycarbonate Composites -- 9.1 Introduction -- 9.2 Fabrication/ Processing of CNT/PC Composites -- 9.2.1 Melt-Processing -- 9.2.2 Solution Processing Methods -- 9.3 Mechanical Properties of CNT/PC Composites -- 9.4 Electrical Properties of CNT/PC Composites -- 9.4.1 Electrical Conductivity.

9.4.2 Electromagnetic Interference Shielding Properties -- 9.5 Conclusions -- References -- 10 Advanced Microscopy Techniques for a Better Understanding of the Polymer/Nanotube Composite Properties -- 10.1 Introduction -- 10.2 Near-Field Microscopies -- 10.2.1 Principles of STM and AFM -- 10.2.2 Near-Field Microscopy for Nanotubes -- 10.2.3 AFM and CNT Composites -- 10.3 Transmission Electron Microscopy -- 10.3.1 Principles -- 10.3.2 Characterization of Carbon Nanotubes -- 10.3.3 Characterization of Polymer/Nanotube Composites -- 10.4 Scanning Electron Microscopy -- 10.4.1 Overview of the Technique (SEI, BEI, CCI) -- 10.4.2 Application to the Study of Nanotubes -- 10.4.3 For Polymer CNT/Nanocomposites -- 10.5 Focused Ion Beam Microscopy -- 10.6 Conclusions -- Acknowledgements -- References -- 11 Visualization of CNTs in Polymer Composites -- 11.1 Introduction -- 11.2 Experimental -- 11.3 Visualization of CNTs at High Accelerating Voltage (5-15 kV) -- 11.3.1 CNT Visualization in Stirred-Composites and Calendered-Composites -- 11.3.2 Imaging Mechanism -- 11.3.3 Determination of Imaging Depth -- 11.3.4 CNT Visibility -- 11.4 Visualization of CNTs at Low Accelerating Voltage (0.3-5 kV) -- 11.4.1 CNT Visualization at Different Voltages -- 11.4.2 Imaging Mechanism -- 11.5 Essential Requirements and Tips for CNT Visualization -- 11.6 Conclusion -- Acknowledgement -- References (with DOI) -- Reference List -- 12 Polymer Nanotube Composites: Latest Challenges and Applications -- 12.1 Carbon Nanotubes -- 12.1.1 Background -- 12.1.2 Synthesis of CNTs -- 12.1.3 Fabrication of CNT Polymer Composites -- 12.1.4 Electrical properties of CNT polymer composites -- 12.1.5 Mechanical Properties of CNT Polymer Composites -- 12.2 Case Studies -- 12.2.1 Case Study: CNT-Based Strain Sensor.

12.2.2 Case Study: Technical and Economic Feasibility of Using CNT-Based Composites in Aerospace Applications -- 12.2.3 Case Study: CNT Composites for Wind Turbine Blades -- 12.2.4 Case Study: CNTs in Flexible Body Armor -- 12.3 Conclusions -- References -- Index -- EULA.
Abstract:
Since the publication of the successful first edition of the book in 2010, the field has matured and a large number of advancements have been made to the science of polymer nanotube nanocomposites (PNT) in terms of synthesis, filler surface modification, as well as properties. Moreover, a number of commercial applications have been realized. The aim of this second volume of the book is, thus, to update the information presented in the first volume as well as to incorporate the recent research and industrial developments.   This edited volume brings together contributions from a variety of senior scientists in the field of polymer nanotube composites technology to shed light on the recent advances in these commercially important areas of polymer technology. The book provides the following features:   Reviews the various synthesis techniques, properties and applications of the polymer nanocomposite systems Describes the functionalization strategies for single walled nanotubes in order to achieve their nanoscale dispersion in epoxy matrices Provides insights into the multiscale modeling of the properties of PNT Provides perspectives on the electron microscopy characterization of PNT Presents an overview of the different methodologies to achieve micro-patterning of PNT Describes the recent progress on hybridization modifications of CNTs with carbon nanomaterials and their further applications in polymer nanocomposites Provides details on the foams generates with PNT Provides information on synthesis and properties of polycarbonate nanocomposite. Describes the advanced microscopy techniques for understanding of the polymer/nanotube composite interfaces and properties.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: