Cover image for Micro and Nanostructured Epoxy/Rubber Blends.
Micro and Nanostructured Epoxy/Rubber Blends.
Title:
Micro and Nanostructured Epoxy/Rubber Blends.
Author:
Thomas, Sabu.
ISBN:
9783527666904
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (463 pages)
Contents:
Micro- and Nanostructured Epoxy/Rubber Blends -- Contents -- Preface -- List of Contributors -- Chapter 1 Introduction -- 1.1 Epoxy Resin - Introduction -- 1.2 Cure Reactions -- 1.3 Curing Agents -- 1.3.1 Catalytic Cure -- 1.3.2 Co-reactive Cure -- 1.3.2.1 Primary and Secondary Amines -- 1.3.2.2 Mercaptans -- 1.3.2.3 Isocyanates -- 1.3.2.4 Carboxylic Acids -- 1.3.2.5 Acid Anhydrides -- 1.4 Different Curing Methods -- 1.4.1 Thermal Curing -- 1.4.2 Microwave Curing -- 1.4.3 Radiation Curing -- 1.4.3.1 Electron Beam Curing -- 1.4.3.2 Gamma Ray Irradiation -- 1.5 Curing of Epoxy Resins: Structure-Property Relationship -- 1.6 Toughening of Epoxy Resin -- 1.6.1 Different Toughening Agents -- 1.6.1.1 Liquid Elastomers for Toughening Epoxy Matrices -- 1.6.1.2 Rigid Crystalline Polymers -- 1.6.1.3 Hygrothermal Toughening Agents -- 1.6.1.4 Core-Shell Particles -- 1.6.1.5 Nanoparticles for Epoxy Toughening -- 1.6.1.6 Thermoplastic Modification of Epoxy Resin -- 1.6.1.7 Block Copolymers as Modifiers for Epoxy Resin -- 1.7 Rubber-Modified Epoxy Resin: Factors Influencing Toughening -- 1.7.1 Concentration Effects -- 1.7.2 Particle Size and Distribution of Rubber -- 1.7.3 Effect of Temperature -- 1.7.4 Effect of Rubber -- 1.7.5 Interfacial Adhesion -- 1.8 Toughening Mechanisms in Elastomer-Modified Epoxy Resins -- 1.8.1 Particle Deformation -- 1.8.2 Shear Yielding -- 1.8.3 Crazing -- 1.8.4 Simultaneous Shear Yielding and Crazing -- 1.8.5 Crack Pinning -- 1.8.6 Cavitation and Rumples -- 1.9 Quantitative Assessment of Toughening Mechanisms -- 1.10 Introduction of Chapters -- References -- Chapter 2 Liquid Rubbers as Toughening Agents -- 2.1 Introduction -- 2.2 Toughening of Thermoset Resins -- 2.3 Fracture Behavior of Rubber-Toughened Thermosets -- 2.4 Natural Rubbers -- 2.4.1 Preparation Method of LNR.

2.4.1.1 Oxidation in the Presence of Redox System -- 2.4.1.2 Oxidation by Photochemical Method -- 2.4.1.3 Oxidation at High Temperatures and High Pressures -- 2.4.1.4 Oxidation by Cleavage Reagent Specific to Double Bonds -- 2.4.1.5 Metathesis Degradation -- 2.5 Liquid-Toughening Rubber in Thermoset Resins -- 2.6 Concluding Remarks -- References -- Chapter 3 Nanostructured Epoxy Composites -- 3.1 Introduction -- 3.2 Preparation Methods of the Nanostructured Epoxy Thermoset -- 3.3 Morphology of the Nanostructured Epoxy Thermoset -- 3.3.1 Parameters Controlling the Morphologies -- 3.3.1.1 Blends Composition -- 3.3.1.2 The Choice of Curing Agent -- 3.3.1.3 Topological Architecture of the Copolymer -- 3.4 Microphase Separation Mechanism -- 3.4.1 Self-Assembly Mechanism -- 3.4.2 Reaction-Induced Microphase Separation Mechanism -- 3.5 Mechanical and Thermal Properties -- 3.5.1 Fracture Toughness -- 3.5.2 Glass Transition Temperature -- 3.6 Conclusions and Outlooks -- References -- Chapter 4 Manufacture of Epoxy Resin/Liquid Rubber Blends -- 4.1 Introduction -- 4.2 Comparison of Hardeners -- 4.3 Rubber-Toughened Epoxy Resins -- 4.4 Cure Reaction Analysis -- 4.5 Conclusions -- References -- Chapter 5 Cure and Cure Kinetics of Epoxy-Rubber Systems -- 5.1 Introduction -- 5.2 Cure Analysis -- 5.3 Curing Kinetics -- 5.3.1 Kinetics Analysis -- 5.3.2 Autocatalytic Model -- 5.3.3 Activation Energies -- 5.3.3.1 Dynamic Kinetics Methods -- 5.3.3.2 Isothermal Methods -- 5.4 Diffusion Factor -- 5.5 Differential Scanning Calorimetry -- 5.5.1 Dynamic DSC -- 5.5.2 Isothermal DSC -- 5.6 FTIR Spectroscopy -- 5.7 Dielectric Spectroscopy Thermal Method -- 5.8 Pressure-Volume-Temperature (PVT) Method -- 5.9 Dynamic Mechanical Analysis (DMA) and Rheological Methods -- 5.10 Conclusions -- Acknowledgments -- References.

Chapter 6 Theoretical Modeling of the Curing Process -- 6.1 Introduction -- 6.2 Modeling of the Curing Kinetics -- 6.2.1 Mechanistic Approach -- 6.2.2 Phenomenological Models Describing the Reaction -- 6.2.2.1 nth-Order Model -- 6.2.2.2 Autocatalytic Model -- 6.2.2.3 Kamal and Sourour Model -- 6.2.2.4 Bailleul Model -- 6.2.3 Rheological Models -- 6.2.3.1 Gel Time Model -- 6.2.3.2 Viscosity Model -- 6.2.4 Effect of Vitrification (Tg) on the Reaction Rate -- 6.3 Applications of the Empirical Models -- 6.4 Conclusion -- References -- Chapter 7 Phase-Separation Mechanism in Epoxy Resin/Rubber Blends -- 7.1 Introduction -- 7.2 Thermodynamics of Phase Separation -- 7.2.1 Nucleation and Growth Mechanism -- 7.2.2 Spinodal Decomposition -- 7.3 Phase Separation in Uncured Epoxy Resin/Liquid Rubber Blends -- 7.4 Phase-Separation Mechanism in Cured Blends -- 7.5 Conclusion -- References -- Chapter 8 Morphology Analysis by Microscopy Techniques and Light Scattering -- 8.1 Introduction -- 8.2 Developments of Morphology Analysis in Rubber-Modified Epoxies -- 8.2.1 Optical Microscopy (OM) -- 8.2.2 Scanning Electron Microscopy (SEM) -- 8.2.3 Atomic Force Microscopy (AFM) -- 8.2.4 Transmission Electron Microscopy (TEM) -- 8.2.5 Small-Angle Light Scattering (SALS) -- 8.3 Different Types of Morphologies -- 8.3.1 Phase-Separation Morphology of Epoxy/Rubbers Blends -- 8.3.2 Morphology of Hybrids -- 8.3.3 Homogeneous Morphology -- 8.4 Morphology of Toughening and Reinforcing Effects -- 8.4.1 Conventional Additives -- 8.4.2 Hyperbranched Polymers -- 8.5 Conclusions -- Acknowledgments -- References -- Chapter 9 Pressure-Volume-Temperature (PVT) Analysis -- 9.1 Introduction -- 9.2 Generalities on the Behavior of the Polymers -- 9.3 Measurement Techniques -- 9.4 PvT Measures on Epoxies -- References.

Chapter 10 Rheology of Rubber-Toughened Structural Epoxy Resin Systems -- 10.1 Introduction -- 10.2 Epoxy Resin Chemistry -- 10.2.1 Basic Epoxy Chemical Reactions -- 10.2.2 Kinetics of Cure -- 10.2.3 Epoxy Reactivity -- 10.3 Modeling of the Cure Process -- 10.4 Rheological Implication of Differences in Reactivity -- 10.4.1 Modeling Rheological Behavior -- 10.4.2 Connection between Rheology and Cure -- 10.5 Rheological Studies of Cure -- 10.6 Toughened Epoxy Resins -- 10.6.1 Carboxy-Terminated Butadiene Acrylonitrile (CTBN) -- 10.6.2 Polyethersulfone (PES) -- 10.6.3 Nano Clay Toughening of Epoxy Resins -- 10.6.4 Toughening with Nano Carbon and Silica Nano Particles -- 10.6.5 Plasticization -- 10.7 Concluding Comments -- Acknowledgments -- References -- Chapter 11 Viscoelastic Measurements and Properties of Rubber-Modified Epoxies -- 11.1 Introduction -- 11.1.1 State Transitions from Liquid to Solid -- 11.1.2 Viscoelasticity of Cured Materials -- 11.2 Viscoelastic Behavior Below and Near Gel Point -- 11.2.1 Liquid-Rubber-Modified Epoxies -- 11.2.2 Core-Shell Rubber-Modified Epoxies -- 11.2.3 Ternary Systems with Fillers -- 11.3 Viscoelasticity of Cured Materials -- 11.3.1 Dynamic Mechanical Study -- 11.3.2 Dielectric Measurement -- 11.4 Other Remarks -- 11.5 Conclusion -- References -- Chapter 12 Light, X-ray, and Neutron Scattering Techniques for Miscibility and Phase Behavior Studies in Polymer Blends -- 12.1 Introduction -- 12.2 Brief Theoretical Considerations of Scattering -- 12.3 Light Scattering Experiment -- 12.4 X-ray Scattering -- 12.5 Neutron Scattering -- 12.5.1 Small-Angle Neutron Scattering (SANS) -- 12.6 Conclusions and Future Outlook -- Acknowledgments -- References -- Chapter 13 Mechanical Properties -- 13.1 Introduction.

13.2 Morphology and Mechanical Properties of Rubber-Modified Epoxies -- 13.2.1 Influence of Rubber Concentration -- 13.2.2 Influence of Initial Cure Temperature -- 13.2.3 Influence of Curing Agent -- 13.2.4 Influence of Acrylonitrile Content -- 13.2.5 Influence of Strain Rate -- 13.2.6 Kerner Equation -- 13.3 Fracture Toughness -- 13.3.1 Effect of Concentration on Fracture Toughness -- 13.3.2 Effect of Strain Rate on Fracture Toughness -- 13.3.3 Effect of Curing Agent on Fracture Toughness -- 13.4 Conclusion -- References -- Chapter 14 Thermal Properties -- 14.1 Specific Heat -- 14.2 Thermal Conductivity -- 14.2.1 Main Methods of Characterization -- 14.2.1.1 Thermal Steady-State Methods -- 14.2.1.2 Thermal Transient Methods -- 14.2.2 Classical Model to Describe Thermal Conductivity as a Function of Temperature and Degree of Cure -- 14.3 Thermogravimetric Analysis of Rubber/Epoxy Systems -- 14.4 Kinetic Study from TGA -- References -- Chapter 15 Dielectric Properties of Elastomeric Modified Epoxies -- 15.1 Introduction -- 15.2 Dielectric Study in Rubber/Epoxy Systems -- 15.2.1 Dielectric Constant (ε) -- 15.2.2 Volume Resistivity (VR) -- 15.2.3 Conductivity (σ) -- 15.2.4 Combined Studies on Dielectric Constant, Volume Resistivity, and Conductivity -- 15.3 Summary -- References -- Chapter 16 Spectroscopy Analysis of Micro/Nanostructured Epoxy/Rubber Blends -- 16.1 Introduction -- 16.2 Fourier Transform Infrared (FTIR) and Raman Spectroscopy -- 16.2.1 DGEBA Epoxy/Rubber Blends -- 16.2.2 Other Epoxy/Rubber Blends -- 16.2.3 FTIR Image and Raman Spectroscopy -- 16.3 Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) -- 16.3.1 Acid-Terminated Rubber/DGEBA Epoxy Blends -- 16.3.2 Hydroxyl-Terminated Rubber/DGEBA Epoxy Blends -- 16.3.3 Neutral Rubber/DGEBA Epoxy Blends.

16.3.4 Other Type Epoxy/Rubber Blends.
Abstract:
Epoxy resins are polymers which are extensively used as coating materials due to their outstanding mechanical properties and good handling characteristics. A disadvantage results from their high cross-link density: they are brittle and have very low resistance to crack growth and propagation. This necessitates the toughening of the epoxy matrix without impairing its good thermomechanical properties. The final properties of the polymer depend on their structure. The book focuses on the microstructural aspects in the modification of epoxy resins with low molecular weight liquid rubbers, one of the prime toughening agents commonly employed. The book follows thoroughly the reactions of elastomer-modified epoxy resins from their liquid stage to the network formation. It gives an in-depth view into the cure reaction, phase separation and the simultaneous development of the morphology. Chapters on ageing, failure analysis and life cycle analysis round out the book.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: