Cover image for Beam Dynamics in High Energy Particle Accelerators.
Beam Dynamics in High Energy Particle Accelerators.
Title:
Beam Dynamics in High Energy Particle Accelerators.
Author:
Wolski, Andrzej.
ISBN:
9781783262786
Personal Author:
Physical Description:
1 online resource (606 pages)
Contents:
Contents -- Preface -- I Electromagnetism and Classical Mechanics -- 1 Electromagnetic Fields in Accelerator Components -- 1.1 Boundary Conditions on Electromagnetic Fields -- 1.1.1 Surface of an infinite permeability material -- 1.1.2 Surface of an ideal conductor -- 1.2 Two-Dimensional Multipole Fields -- 1.2.1 Current distribution for a pure multipole -- 1.2.2 Geometry of iron-dominated multipole magnets -- 1.2.3 Multipole decomposition -- 1.3 Three-Dimensional Fields -- 1.3.1 Cartesian and cylindrical modes -- 1.3.2 Generalised gradients -- 1.4 Fields in Radiofrequency Cavities -- 1.4.1 Rectangular cavities -- 1.4.2 Cylindrical cavities -- 2 Hamiltonian for a Particle in an Accelerator Beam Line -- 2.1 The Hamiltonian for a Straight Beam Line -- 2.2 Dynamical Variables for Beam Dynamics -- 2.3 The Hamiltonian in a Curved Co-ordinate System -- 2.4 Symplectic Transfer Maps and Liouville's Theorem -- II Single-Particle Linear Dynamics -- 3 Linear Transfer Maps for Common Components -- 3.1 Drift Space -- 3.2 Dipole Magnet -- 3.3 Dipole Fringe Fields and Edge Focusing -- 3.4 Quadrupole Magnet -- 3.5 Solenoid -- 3.6 Radiofrequency Cavity -- 3.7 Spin Dynamics -- 4 Linear Optics in Uncoupled Beam Lines -- 4.1 A FODO Lattice -- 4.2 The Courant-Snyder Parameters -- 4.3 Action-Angle Variables -- 4.4 Courant-Snyder Parameters in a FODO Beam Line -- 4.5 Hill's Equation -- 4.6 Courant-Snyder Parameters and Particle Distribution -- 5 Coupled Optics -- 5.1 Transverse-Longitudinal Coupling -- 5.1.1 Dispersion -- 5.1.2 Momentum compaction and phase slip -- 5.1.3 Synchrotron motion -- 5.2 Fully Coupled Motion -- 5.3 Dispersion Revisited -- 5.4 Examples of Coupled Optics -- 5.4.1 Uniform solenoid field -- 5.4.2 Flat-beam electron source -- 6 Linear Imperfections in Storage Rings -- 6.1 The Closed Orbit -- 6.2 Dipole Field Errors.

6.3 Quadrupole Alignment Errors -- 6.4 Focusing Errors -- 6.5 Beam-Based Alignment of Quadrupoles -- 6.6 Coupling Errors -- 7 Effects of Synchrotron Radiation -- 7.1 Classical Radiation: Radiation Damping -- 7.2 Quantum Radiation: Quantum Excitation -- 7.3 Equilibrium Emittance and Lattice Design -- 7.3.1 Natural emittance in a FODO storage ring -- 7.3.2 Double-bend achromat -- 7.3.3 TME lattices and multibend achromats -- 7.4 Computation of Equilibrium Emittances -- 7.5 Synchrotron Radiation and Spin Polarisation -- III Single-Particle Nonlinear Dynamics -- 8 Examples of Nonlinear Effects in Accelerator Beam Lines -- 8.1 Longitudinal Dynamics in a Bunch Compressor -- 8.2 Chromaticity in a Linear FODO Beam Line -- 8.3 Chromaticity in Storage Rings -- 9 Representations of Transfer Maps -- 9.1 Lie Transformations -- 9.2 Power Series Map for a Sextupole -- 9.3 Mixed-Variable Generating Functions -- 10 Symplectic Integrators -- 10.1 Splitting Methods -- 10.2 Explicit Symplectic Integrator for s-dependent Fields -- 10.3 Symplectic Runge-Kutta Integrators -- 11 Methods for Analysis of Single-Particle Dynamics -- 11.1 A Lie Transformation Example: the -I Transformer -- 11.2 Canonical Perturbation Theory -- 11.2.1 Dipole perturbations: closed orbit distortion -- 11.2.2 Quadrupole perturbations: focusing errors -- 11.2.3 Skew quadrupole perturbations: coupling -- 11.2.4 Sextupole perturbations -- 11.3 Resonances and Dynamic Aperture -- 11.4 Normal Form Analysis -- 11.5 A Numerical Method: Frequency Map Analysis -- IV Collective Effects -- 12 Space Charge -- 12.1 The Kapchinsky-Vladimirsky Distribution -- 12.2 The Envelope Equations for the KV Distribution -- 12.3 Elliptically Symmetric Non-KV Distributions -- 12.4 Space-Charge Tune Shifts -- 12.5 Matching a Continuous Beam to a Solenoid Field -- 12.6 Longitudinal Dynamics with Space Charge.

12.7 Beam-Beam Effects -- 13 Scattering Effects -- 13.1 Touschek Effect -- 13.2 Intrabeam Scattering -- 13.2.1 Piwinski formulae -- 13.2.2 Bjorken-Mtingwa formulae -- 13.2.3 High energy approximation -- 14 Wake Fields, Wake Functions and Impedance -- 14.1 Wake Fields in a Resonant Cavity -- 14.2 Resistive-Wall Wake Fields -- 14.3 Wake Functions -- 14.4 Impedance -- 15 Coherent Instabilities -- 15.1 Coupled-Bunch Instabilities -- 15.1.1 Transverse modes -- 15.1.2 Longitudinal modes -- 15.2 Potential-Well Distortion -- 15.3 Coasting Beams: Microwave Instability -- 15.4 Single-Bunch Instabilities -- 15.4.1 Head-tail instability -- 15.4.2 Sacherer's integral equation -- 15.4.3 Discrete modes: Robinson instability -- 15.4.4 Mode coupling -- Bibliography -- Index.
Abstract:
Particle accelerators are essential tools for scientific research in fields as diverse as high energy physics, materials science and structural biology. They are also widely used in industry and medicine. Producing the optimum design and achieving the best performance for an accelerator depends on a detailed understanding of many (often complex and sometimes subtle) effects that determine the properties and behavior of the particle beam. Beam Dynamics in High Energy Particle Accelerators provides an introduction to the concepts underlying accelerator beam line design and analysis, taking an approach that emphasizes the elegance of the subject and leads into the development of a range of powerful techniques for understanding and modeling charged particle beams.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: