Cover image for Photonics and Electronics with Germanium.
Photonics and Electronics with Germanium.
Title:
Photonics and Electronics with Germanium.
Author:
Wada, Kazumi.
ISBN:
9783527650231
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (335 pages)
Contents:
Cover -- Title Page -- Copyright -- Contents -- Preface -- List of Contributors -- Chapter 1 Defects in Germanium -- 1.1 Introduction -- 1.2 Methods for Studying Defects and Impurities -- 1.2.1 Experimental Techniques -- 1.2.2 First-Principles Calculations -- 1.3 Impurities -- 1.3.1 Shallow Dopants -- 1.3.2 Hydrogen -- 1.4 Intrinsic Defects -- 1.4.1 Vacancies -- 1.4.1.1 Electronic Structure -- 1.4.1.2 Formation Energy -- 1.4.1.3 Defect Levels -- 1.4.1.4 Comparison with Silicon -- 1.4.1.5 Diffusion -- 1.4.2 Self-Interstitials -- 1.4.3 Dangling Bonds -- 1.4.3.1 Electronic Levels -- 1.4.4 Impact on Devices -- 1.5 Summary -- References -- Chapter 2 Hydrogen in Ge -- 2.1 Introduction -- 2.2 Properties of Hydrogen in Ge -- 2.2.1 Incorporation of Hydrogen -- 2.2.2 Isolated Hydrogen -- 2.2.3 Hydrogen Dimers -- 2.2.3.1 Interstitial H2 -- 2.2.3.2 The H2* Defect -- 2.2.3.3 H2 Molecules in Hydrogen-Induced Platelets -- 2.2.3.4 Complexes of Hydrogen with Other Defects -- 2.3 Hydrogen Passivation of Shallow Donors and Acceptors in Ge -- 2.3.1 Donor Passivation -- 2.3.2 Hydrogen in p-type Ge -- 2.3.3 Schottky Contacts on p-type Ge -- 2.4 Summary -- Acknowledgments -- References -- Chapter 3 Epitaxy of Ge Layers on Blanket and Patterned Si(001) for Nanoelectronics and Optoelectronics -- 3.1 General Introduction -- 3.2 Epitaxial Growth of Ge Thick Layers on Si(001) -- 3.2.1 Growth Protocol and Kinetics -- 3.2.2 Surface Morphology -- 3.2.3 Strain State -- 3.2.4 Defects Density and Distribution in the Ge Layers -- 3.3 Ge Surface Passivation with Si -- 3.3.1 Passivation Protocol -- 3.3.2 Surface and Film Morphology -- 3.4 SEG of Ge in Cavities at the End of Optical Waveguides.

3.5 Fabrication, Structural, and Electrical Properties of Compressively Strained Ge-on-Insulator Substrates -- 3.5.1 The c-Ge on Si0.15Ge0.85 Process Flow -- 3.5.2 Structural Properties of the c-Ge on Si0.15Ge0.85 Stacks as a Function of the Ge Layer Thickness -- 3.5.2.1 Surface Morphology -- 3.5.2.2 Macroscopic Strain State -- 3.5.2.3 Defect Density -- 3.5.3 Properties of the c-GeOI Substrates -- 3.5.3.1 Structural Properties -- 3.5.3.2 Electrical Properties -- 3.5.3.3 Benchmark -- 3.6 Conclusion and Perspectives -- References -- Chapter 4 Heavy Doping in Si1-xGex Epitaxial Growth by Chemical Vapor Deposition -- 4.1 Introduction -- 4.2 In situ Doping of B, P, and C in Si1-x Gex Epitaxial Growth -- 4.2.1 In situ Doping Characteristics in Si1-xGex Epitaxial Growth -- 4.2.2 Relationship between Carrier and Impurity (B or P) Concentrations in Si1-x-yGexCy Epitaxial Film -- 4.3 Atomic-Layer Doping in Si1-xGex Epitaxial Growth -- 4.3.1 Boron Atomic-Layer Doping in Si1-xGex Epitaxial Growth -- 4.3.1.1 Surface Reaction of B2H6 on Si1-xGex(100) -- 4.3.1.2 Si1-xGex Epitaxial Growth over B Atomic Layer Already Formed on the (100) Surface -- 4.3.2 Phosphorus Atomic-Layer Doping in Si1-xGex Epitaxial Growth -- 4.3.2.1 Surface Reaction of PH3 on Si1-xGex(100) -- 4.3.2.2 Si1-xGex Epitaxial Growth over P Atomic Layer Already-Formed on the (100) Surface -- 4.3.3 Carbon Atomic-Layer Doping in Si/Si1-xGex/Si(100) Structure -- 4.3.3.1 Surface Reaction of SiH3CH3 on Si1-xGex(100) -- 4.3.3.2 Si1-xGex Epitaxial Growth over C Atomic Layer Already Formed on the (100) Surface -- 4.4 Conclusion and Future Trends -- Acknowledgments -- References.

Chapter 5 FEOL Integration of Silicon- and Germanium-Based Photonics in Bulk-Silicon, High-Performance SiGe: C-BiCMOS Processes -- 5.1 Introduction -- 5.2 Local SOI Technology -- 5.3 Passive Silicon Waveguide Technology -- 5.4 Modulator Technology -- 5.5 Photonics Integration in BiCMOS Flow -- 5.6 Germanium Photo Detector - Process Integration Challenges -- 5.7 Example Circuit - 10 Gbit s-1 Modulator with Driver -- 5.8 Outlook -- Acknowledgments -- References -- Chapter 6 Ge Condensation and Its Device Application -- 6.1 Principle of Ge Condensation and Fabrication Process -- 6.1.1 Basic Concept of Ge Condensation Process -- 6.1.2 Critical Process Parameters -- 6.2 GOI Film Characterization -- 6.2.1 Thickness Control -- 6.2.2 Residual Impurity -- 6.2.3 Strain Behavior -- 6.2.4 Defects and Dislocations -- 6.2.5 Electrical Properties -- 6.3 Device Application -- 6.3.1 Planar GOI MOSFET -- 6.3.2 MOSFETs Using Local Ge Condensation -- 6.3.2.1 Planar MOSFETs -- 6.3.2.2 Multi-gate and Nanowire MOSFETs -- 6.3.3 Stressor -- 6.3.4 Photonic Devices -- 6.4 Summary -- References -- Chapter 7 Waveguide Design, Fabrication, and Active Device Integration -- 7.1 Introduction -- 7.2 Design of Silicon Photonic Wire Waveguiding System -- 7.2.1 Guided Modes of Si Photonic Wire Waveguide -- 7.2.2 External Coupling of Silicon Photonic Wire Waveguide -- 7.2.3 Coupling to Ge Photonic Devices -- 7.3 Fabrication -- 7.3.1 Si Waveguide Core -- 7.3.2 Dynamic and Active Layers -- 7.3.3 SSCs and Overcladding -- 7.4 Propagation Performance of Waveguides -- 7.5 Integration of Si/Silica and Ge Photonic Devices -- 7.5.1 Integration of Si-Based Modulation Device and Ge-Based Photodetectors -- 7.5.2 Integration of Si/Silica-Based Wavelength Filter and Ge-Based Photodetectors -- 7.6 Summary -- References -- Chapter 8 Detectors -- 8.1 Introduction.

8.2 Historical Background -- 8.3 Fiber-Optics Revolution -- 8.4 Avalanche Devices -- 8.5 Si-Photonics -- 8.6 High-Performance Ge Detectors -- 8.7 Process Options and Challenges -- 8.7.1 Physical Vapor Deposition (PVD) -- 8.7.2 Chemical Vapor Deposition -- 8.7.3 Rapid Melt Growth -- 8.7.4 Other Techniques -- 8.8 Device Architectures -- 8.9 Ge on Si Detectors in Highly Integrated Systems -- 8.10 Reliability -- 8.11 Conclusions -- References -- Chapter 9 Ge and GeSi Electroabsorption Modulators -- 9.1 Introduction -- 9.2 EAE in Ge and GeSi: Theoretical and Experimental -- 9.2.1 Franz-Keldysh Effect -- 9.2.2 Quantum-Confined Stark Effect -- 9.2.3 Comparison of Ge FKE with QCSE Modulators -- 9.3 Waveguide Coupling -- 9.4 Current Progress in Ge and GeSi EAMs -- 9.5 Conclusions -- References -- Chapter 10 Strained Ge for Si-Based Integrated Photonics -- 10.1 Introduction -- 10.2 Bandgap and Strain: Theory -- 10.3 Bandgap and Strain: Experiment -- 10.3.1 Si -- 10.3.2 Ge on Si -- 10.3.3 GaAs on Ge on Si -- 10.4 Strain-Engineered Tunability of Lasers -- 10.5 Conclusions -- Acknowledgment -- References -- Chapter 11 Ge Quantum Dots-Based Light Emitting Devices -- 11.1 Introduction -- 11.2 Formation of Ge Dots on Si Substrates and Their Luminescent Properties -- 11.3 Enhanced Light Emission from Ge QDs Embedded in Optical Cavities -- 11.4 Optically Excited Light Emission from Ge QDs -- 11.4.1 Photonic Crystal Cavity -- 11.4.1.1 General Device Description -- 11.4.1.2 PL from PhC Microcavities -- 11.4.1.3 PL from L3-Type PhC Nanocavities -- 11.4.1.4 PL from Double-Heterostructure PhC Nanocavities -- 11.4.2 Microdisk/Ring -- 11.4.2.1 General Device Description -- 11.4.2.2 PL from Microdisks and Rings -- 11.5 Electrically Excited Light Emission from Ge ODs -- 11.5.1 Photonic Crystal Cavity -- 11.5.1.1 Vertical PIN Structure.

11.5.1.2 Lateral PIN Structure -- 11.5.1.3 Optimized Lateral PIN Structure -- 11.5.2 Microdisk -- 11.6 Conclusion -- References -- Chapter 12 Ge-on-Si Lasers -- 12.1 Introduction -- 12.2 Modeling and Analyses of Band-Engineered Ge Optical Gain Media -- 12.2.1 Optical Gain from the Direct Gap Transition of Ge -- 12.2.1.1 Unstrained Ge -- 12.2.1.2 Tensile Strained Ge -- 12.2.2 Band-Engineering by Combining Tensile Strain with N-type Doping -- 12.2.3 FCA Losses -- 12.2.4 Band Gap Narrowing in n+ Ge -- 12.2.5 Net Optical Gain Analyses for Tensile-Strained N+ Ge -- 12.2.6 Cocktail Band-Engineering Approach Involving Sn Alloying -- 12.2.7 Toward High Performance Ge QW Structures -- 12.3 Fabrication of Band-Engineered Ge-on-Si -- 12.3.1 Tensile Strained Ge-on-Si -- 12.3.2 N-Type Doping -- 12.3.2.1 Regular In situ Doping -- 12.3.2.2 Delta Doping Followed by Thermally Activated Drive-in Diffusion -- 12.3.2.3 Diffusion Doping from SOD Sources -- 12.3.3 Sn Alloying -- 12.4 Band-Engineered Ge-on-Si Light Emitters -- 12.4.1 Spontaneous Emission -- 12.4.1.1 Features of Direct Gap Emission from Ge -- 12.4.1.2 Spontaneous Emission from Ge and GeSn Microcavities -- 12.4.2 Optical Gain -- 12.4.3 Optically-Pumped Ge-on-Si Lasers -- 12.4.4 Electrically-Pumped Ge-on-Si Lasers -- 12.5 Conclusions -- Acknowledgments -- References -- Index -- EULA.
Abstract:
Representing a further step towards enabling the convergence of computing and communication, this handbook and reference treats germanium electronics and optics on an equal footing. Renowned experts paint the big picture, combining both introductory material and the latest results. The first part of the book introduces readers to the fundamental properties of germanium, such as band offsets, impurities, defects and surface structures, which determine the performance of germanium-based devices in conjunction with conventional silicon technology. The second part covers methods of preparing and processing germanium structures, including chemical and physical vapor deposition, condensation approaches and chemical etching. The third and largest part gives a broad overview of the applications of integrated germanium technology: waveguides, photodetectors, modulators, ring resonators, transistors and, prominently, light-emitting devices. An invaluable one-stop resource for both researchers and developers.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: