Cover image for Lanthanides and Actinides in Molecular Magnetism.
Lanthanides and Actinides in Molecular Magnetism.
Title:
Lanthanides and Actinides in Molecular Magnetism.
Author:
Layfield, Richard.
ISBN:
9783527673506
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (367 pages)
Contents:
Lanthanides and Actinides in Molecular Magnetism -- Contents -- Preface -- List of Contributors -- Chapter 1 Electronic Structure and Magnetic Properties of Lanthanide Molecular Complexes -- 1.1 Introduction -- 1.2 Free Ion Electronic Structure -- 1.2.1 Free Ion Magnetism -- 1.3 Electronic Structure of Lanthanide Ions in a Ligand Field -- 1.3.1 Stevens' Formalism -- 1.3.2 Wybourne's Formalism -- 1.3.3 Standardization -- 1.3.4 Calculation of Crystal Field Parameters -- 1.4 Magnetic Properties of Isolated Lanthanide Ions -- 1.4.1 Effect of a Magnetic Field -- 1.4.2 EPR Spectroscopy of Lanthanide Complexes -- 1.5 Exchange Coupling in Systems Containing Orbitally Degenerate Lanthanides -- Acknowledgements -- References -- Chapter 2 Mononuclear Lanthanide Complexes: Use of the Crystal Field Theory to Design Single-Ion Magnets and Spin Qubits -- 2.1 Introduction -- 2.2 Modelling the Magnetic Properties of Lanthanide Single-Ion Magnets: The Use of the Crystal Field Model -- 2.2.1 Theoretical Background -- 2.2.2 How to Determine the Crystal-Field Parameters: 1. The Ishikawa Approach -- 2.2.3 How to Determine the Crystal-Field Parameters: 2. The Point Charge Electrostatic Model -- 2.2.4 How to Determine the Crystal-Field Parameters: 3. The Effective Point Charge Model -- 2.3 Magneto-Structural Correlations for Some Typical Symmetries -- 2.4 Impact of Lanthanide Complexes in Quantum Computing -- 2.4.1 Quantum Computing Paradigms and Design Criteria -- 2.4.2 Combining Physical Qubit Implementations with Lanthanide Complexes -- 2.4.3 Molecular Spin Qubits -- 2.5 Conclusions -- Acknowledgements -- References -- Chapter 3 Polynuclear Lanthanide Single Molecule Magnets -- 3.1 Introduction -- 3.2 Synthetic Strategies -- 3.2.1 Dy3 Triangles and Their Derivatives -- 3.2.1.1 Seminal Dy3 Triangle.

3.2.1.2 Other Triangular Dy3 Systems -- 3.2.1.3 The Coupling of Dy3 Triangles -- 3.2.2 Linear Polynuclear Lanthanide Complexes Showing Robust SMM Behaviour -- 3.2.2.1 Linear Dy3 SMMs -- 3.2.2.2 Linear Dy4 SMMs -- 3.2.3 Planar Dy4 SMMs -- 3.2.4 Dyn SMMs Having Multiple μn-O (n>4) Bridges -- 3.2.4.1 The Dy4 Grids Fixed by μ4-O Atom -- 3.2.4.2 The Dy4 Tetrahedron Fixed by μ4-O Atom -- 3.2.4.3 The Dy5 Pyramid Fixed by μ5-O Atom -- 3.2.5 Hydrazone-Based Lanthanide SMMs -- 3.2.5.1 The Assembly of Dy6 Triangular Prism with Dy2 Units -- 3.2.5.2 A Dy3 Molecular Cluster Pair (Dy6) -- 3.2.6 The Organometallic Synthesis - A New Approach -- 3.3 Conclusion -- References -- Chapter 4 Lanthanides in Extended Molecular Networks -- 4.1 Introduction -- 4.2 Extended Networks Based on Gd3+ -- 4.2.1 Metal-Organic Frameworks -- 4.2.1.1 Magneto-Caloric Effect -- 4.2.1.2 Slow Magnetic Relaxation and Phonon Bottleneck Effects -- 4.2.2 Magnetic Chains -- 4.2.2.1 Magnetic Interactions Involving Gd3+ Ions -- 4.2.2.2 Gadolinium-Radical Chains -- 4.3 Extended Networks Based on Anisotropic Ions -- 4.3.1 SCM in a Nutshell -- 4.3.2 An Overview of Monodimensional Lanthanide Chains Based on Anisotropic Ions -- 4.3.2.1 Chains Based on 4f Ions -- 4.3.2.2 Chains Based on 3d-4f Ions -- 4.3.2.3 Chains Based on Radicals and 4f Ions -- 4.3.3 The Key Point of Noncollinearity of Magnetic Anisotropy -- 4.4 Conclusions -- References -- Chapter 5 Experimental Aspects of Lanthanide Single-Molecule Magnet Physics -- 5.1 Introduction -- 5.2 Manifestation of Single-Molecule Magnet Behaviour -- 5.2.1 Magnetization and ac Susceptibility Measurements -- 5.2.2 NMR Spectroscopy -- 5.2.3 Muon Spin Rotation -- 5.3 Quantifying the Magnetic Anisotropy -- 5.4 Splitting of the Ground Multiplet -- 5.4.1 Magnetic Resonance Spectroscopies -- 5.4.2 Luminescence Spectroscopy.

5.4.3 Inelastic Neutron Scattering -- 5.5 Observation of the Signatures of Exchange Coupling -- 5.5.1 Chemical Substitution -- 5.5.2 X-Ray Magnetic Circular Dichroism -- 5.6 Concluding Remarks and Perspectives -- References -- Chapter 6 Computational Modelling of the Magnetic Properties of Lanthanide Compounds -- 6.1 Introduction -- 6.2 Ab Initio Description of Lanthanides and its Relation to Other Methods -- 6.2.1 Ab Initio Approach for the Electronic Structure of Lanthanides -- 6.2.1.1 Accounting for Static Electron Correlation within CASSCF -- 6.2.1.2 Accounting for Dynamical Electron Correlation: An Important Step Towards Accurate Predictions -- 6.2.1.3 Accounting for Relativistic Effects within the Douglas-Kroll-Hess Theory -- 6.2.1.4 Spin-Orbit Multiplets of Free Lanthanide Ions: Relativistic CASSCF/RASSI Method in Work -- 6.2.2 Ab Initio Versus Two-Component DFT -- 6.2.3 Ab Initio Versus Phenomenological Crystal Field Theory for Lanthanides -- 6.3 Ab Initio Calculation of Anisotropic Magnetic Properties of Mononuclear Complexes -- 6.3.1 Implementation of Ab Initio Methodology: SINGLE_ANISO Program -- 6.3.2 Temperature-Dependent Magnetic Susceptibility and Field-Dependent Magnetization -- 6.3.3 Magnetic Anisotropy in Low-Lying Doublets -- 6.3.4 Ab Initio Crystal Field -- 6.4 Ab Initio Calculation of Anisotropic Magnetic Properties of Polynuclear Complexes -- 6.4.1 Two-Step Approach for the Calculation of Electronic Structure of Polynuclear Lanthanide Complexes -- 6.4.2 Key Rules for Cluster Fragmentation -- 6.4.3 Implementation of Ab Initio Methodology: POLY_ANISO Program -- 6.4.4 Noncollinear Magnetic Structure of Lnn Complexes -- 6.4.5 Mixed Lanthanide-Transition Metal Compounds -- 6.4.6 Lanthanide-Containing Magnetic Chains -- 6.5 Conclusions -- References.

Chapter 7 Lanthanide Complexes as Realizations of Qubits and Qugates for Quantum Computing -- 7.1 Introduction to Quantum Computation -- 7.1.1 General Introduction -- 7.1.2 Definition of Qubits, Qugates, Timescales and Essential Requirements -- 7.1.3 Current Proposals for the QC Hardware -- 7.1.3.1 Trapped Ions -- 7.1.3.2 Nuclear Spins -- 7.1.3.3 Superconducting Qubits -- 7.1.3.4 Spin Qubits -- 7.1.3.5 Photons -- 7.1.3.6 Hybrid Proposals and Quantum Circuits -- 7.2 Quantum Computing with Electron Spin Qubits -- 7.2.1 Electronic Spins in Semiconductors: QDs and Dopants -- 7.2.1.1 Quantum Dots -- 7.2.1.2 Dopants and Defects -- 7.2.2 Electronic Spins in Molecules: Organic Radicals and Transition Metal Complexes -- 7.2.2.1 Organic Radicals -- 7.2.2.2 Transition Metal Complexes -- 7.3 Single Lanthanide Ions as Spin Qubits -- 7.3.1 Quantum Coherence of Lanthanide Ions Doped into Crystalline Solids -- 7.3.2 Control of the Magnetic Anisotropy of Lanthanide Ions: Chemical Design of Spin Qubits -- 7.3.2.1 Mononuclear Single Molecule Magnets -- 7.3.2.2 Gadolinium(III) POMs as Spin Qubits -- 7.3.2.3 Mononuclear SMMs of Ln(III) Ions with Nonzero Orbital Moment -- 7.4 Lanthanide Molecules as Prototypes of Two-Qubit Quantum Gates -- 7.4.1 A Family of Asymmetric [Ln2] Complexes with Weak Magnetic Coupling -- 7.4.2 Heterometallic [LnLn'] Complexes: A Fabric of Chemical Asymmetry and Individual Qubits -- 7.4.3 Evaluating Qubit Properties -- 7.4.4 Weak Coupling -- 7.4.5 Asymmetry and Energy Diagrams -- 7.4.6 Decoherence of the Molecular Quantum Processor Prototypes -- 7.5 Conclusions and Outlook -- References -- Chapter 8 Bis(phthalocyaninato) Lanthanide(III) Complexes - from Molecular Magnetism to Spintronic Devices -- 8.1 Introduction -- 8.1.1 Molecular Magnetism.

8.1.2 Multinuclear Versus Mononuclear: d- Versus f-Metal Ions -- 8.1.3 Molecular Versus Organic Spintronics -- 8.2 Synthesis and Structure of LnPc2 Complexes -- 8.2.1 Synthesis of Bis(phthalocyaninato) Lanthanide(III) Complexes -- 8.2.2 Synthesis of Heteroleptic Lanthanide(III) Complexes Containing Porphyrin-Based Ligands -- 8.2.3 Oxidation States of Bis(phthalocyaninato) Lanthanide(III) Complexes -- 8.2.4 Rotation Angles and Skew Angles in LnPc2 in Relation to the Lanthanide Contraction -- 8.3 Bulk Magnetism of LnPc2 Complexes -- 8.3.1 Magnetism of Bis(phthalocyaninato) Lanthanide(III) Complexes -- 8.3.2 Three Spin Systems in [TbPc2]0 Single-Ion Molecular Magnets (SIMMs) -- 8.3.2.1 The Organic Radical (S) -- 8.3.2.2 The Electronic Spin (J) -- 8.3.2.3 The Nuclear Spin (I) -- 8.3.3 Further SIMs of LnPc2 with Ln = Tb, Dy and Ho -- 8.3.4 Internal Kondo in LnPc2 Complexes with Ln = Ce, Yb -- 8.3.5 Stable Organic Radicals S=1/2 in LnPc2 with Ln = Y, Lu -- 8.3.6 A Special Case: Half-Filling of the f-Orbitals in GdPc2 and its Consequences -- 8.4 Surface Magnetism of LnPc2 Complexes -- 8.4.1 Deposition of [TbPc2]0 SIMMs on Nonmagnetic Substrates -- 8.4.1.1 Highly Oriented Pyrolitic Graphite -- 8.4.1.2 Au(111) -- 8.4.1.3 Cu(111) -- 8.4.1.4 Cu(100) -- 8.4.2 Deposition of [TbPc2]0 SIMs on Magnetic Substrates -- 8.4.2.1 Nickel Thin Films -- 8.4.2.2 Cobalt Thin Films -- 8.4.2.3 LSMO -- 8.4.2.4 Manganese and Cobalt Oxide Layers -- 8.4.2.5 Spin Polarized Scanning Tunnelling Microscopy (SP-STM) on Co/Ir(111) -- 8.5 Molecular Spintronic Devices on the Base of [TbPc2]0 SIMs -- 8.5.1 Graphene Transistor -- 8.5.2 Supramolecular Spin Valve -- 8.5.3 Molecular Spin Resonator -- 8.5.4 Molecular Spin Transistor -- 8.6 Conclusion and Outlook -- Abbreviations -- References.

Chapter 9 Lanthanides and the Magnetocaloric Effect.
Abstract:
The first reference on this rapidly growing topic provides an essential up-to-date guide to current and emerging trends. A group of international experts has been carefully selected by the editors to cover all the central aspects, with a focus on molecular species while also including industrial applications. The resulting unique overview is a must-have for researchers, both in academia and industry, who are entering or already working in the field.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: