Cover image for Modern Methods in Stereoselective Aldol Reactions.
Modern Methods in Stereoselective Aldol Reactions.
Title:
Modern Methods in Stereoselective Aldol Reactions.
Author:
Mahrwald, Rainer.
ISBN:
9783527656738
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (628 pages)
Contents:
Modern Methods in Stereoselective Aldol Reactions -- Contents -- Preface -- List of Contributors -- 1 Stereoselective Acetate Aldol Reactions -- 1.1 Introduction -- 1.2 Mukaiyama Aldol Reaction -- 1.2.1 Concept and Mechanism -- 1.2.2 Chiral Auxiliaries -- 1.2.3 Chiral Methyl Ketones -- 1.2.4 Chiral Aldehydes -- 1.2.4.1 1,2-Asymmetric Induction -- 1.2.4.2 1,3-Asymmetric Induction -- 1.2.4.3 Merged 1,2- and 1,3-Asymmetric Induction -- 1.2.5 Chiral Lewis Acids -- 1.2.6 Chiral Lewis Bases -- 1.3 Metal Enolates -- 1.3.1 Concept and Mechanism -- 1.3.2 Chiral Auxiliaries -- 1.3.3 Stoichiometric Lewis Acids -- 1.3.4 Catalytic Lewis Acids -- 1.3.5 Chiral Aldehydes -- 1.3.6 Chiral Methyl Ketones -- 1.3.6.1 a-Methyl Ketones -- 1.3.6.2 a-Hydroxy Ketones -- 1.3.6.3 b-Hydroxy Ketones -- 1.3.6.4 b-Hydroxy a-Methyl Ketones -- 1.3.6.5 a,b-Dihydroxy Ketones -- 1.3.6.6 Remote Stereocontrol -- 1.4 Conclusions -- References -- 2 The Vinylogous Mukaiyama Aldol Reaction in Natural Product Synthesis -- 2.1 Introduction -- 2.2 Aldehyde-Derived Silyl Dienol Ethers -- 2.2.1 Aldehyde-Derived Silyl Dienol Ethers - Diastereoselective Processes -- 2.2.2 Aldehyde-Derived Silyl Dienol Ethers - Enantioselective Processes -- 2.3 Ester-Derived Silyl Dienol Ethers -- 2.3.1 Ester-Derived Silyl Dienol Ethers - Diastereoselective Processes -- 2.3.2 Ester-Derived Silyl Dienol Ethers - Enantioselective Processes -- 2.3.3 Ester-Derived Silyl Dienol Ethers - Enantioselective and Substrate-Controlled Processes -- 2.4 Amide-Derived Silyl Dienol Ethers - Vinylketene Silyl N,O-Acetals -- 2.4.1 Model Systems - Kobayashi's Pioneering Studies -- 2.4.2 Total Syntheses -- 2.5 Acyclic Acetoacetate-Derived Silyl Dienolates - Chan's Diene -- 2.5.1 Chan's Diene in Diastereoselective Processes -- 2.5.2 Chan's Diene in Enantioselective Processes.

2.5.3 Chan's Diene in Enantioselective and Substrate-Controlled Processes -- 2.6 Cyclic Acetoacetate-Derived Dienolates -- 2.6.1 Cyclic Acetoacetate-Derived Dienolates - Diastereoselective Processes -- 2.6.2 Cyclic Acetoacetate-Derived Dienolates - Enantioselective Processes -- 2.6.3 Cyclic Acetoacetate-Derived Dienolates - Enantioselective and Substrate-Controlled Processes -- 2.7 Furan-Derived Silyloxy Dienes -- 2.7.1 Furan-Derived Silyloxy Dienes - Diastereoselective Processes -- 2.7.2 Furan-Derived Silyloxy Dienes - Enantioselective Processes -- 2.7.3 Furan-Derived Silyloxy Dienes - Enantioselective and Substrate-Controlled Processes -- 2.8 Pyrrole-Based 2-Silyloxy Dienes -- 2.9 Comparison with Other Methods -- References -- 3 Organocatalyzed Aldol Reactions -- 3.1 Introduction -- 3.2 Proline as Organocatalyst -- 3.2.1 Intramolecular Reactions -- 3.2.1.1 Intramolecular Proposed Mechanism -- 3.2.1.2 Application to Natural Product Synthesis -- 3.2.2 Intermolecular Reactions -- 3.2.2.1 Ketones as Source of Nucleophile -- 3.2.2.2 Aldehydes as Source of Nucleophile -- 3.2.2.3 Intermolecular Reaction Mechanism -- 3.2.2.4 Application to Natural Product Synthesis -- 3.3 Proline Derivatives as Organocatalysts -- 3.3.1 Prolinamide Derivatives -- 3.3.1.1 Ketones as Source of Nucleophile -- 3.3.1.2 Aldehydes as Source of Nucleophile -- 3.3.1.3 Application to Natural Product Synthesis -- 3.3.2 Proline Peptide Derivatives -- 3.3.2.1 Ketones as Source of Nucleophile -- 3.3.3 Hydroxyproline Derivatives -- 3.3.3.1 Intramolecular Reactions -- 3.3.3.2 Intermolecular Reactions -- 3.3.4 Sulfonimide Proline Derivatives -- 3.3.4.1 Ketones as Source of Nucleophile -- 3.3.4.2 Application to Natural Product Synthesis -- 3.3.5 Other Proline Derivatives -- 3.3.5.1 Intramolecular Reactions -- 3.3.5.2 Intermolecular Reactions.

3.3.5.3 Application to Natural Product Synthesis -- 3.3.6 Other Organocatalysts -- 3.3.6.1 Intramolecular Reactions -- 3.3.6.2 Intermolecular Reactions -- 3.3.7 Phase-Transfer Catalysis -- 3.4 Conclusions and Outlook -- References -- 4 Supersilyl Protective Groups in Aldol Reactions -- 4.1 Introduction -- 4.2 Aldol Addition with Acetaldehyde-Derived Super Silyl Enol Ether (1) -- 4.3 a-Substituted Silyl Enol Ethers Derived from Aldehydes -- 4.4 Aldol Addition to Chiral Aldehydes -- 4.5 One-Pot Sequential Aldol Reactions -- 4.6 Sequential Aldol-Aldol Reactions of Acetaldehyde -- 4.6.1 Acetaldehyde Double Aldol Reactions -- 4.6.2 Acetaldehyde Triple Aldol Reactions -- 4.6.3 Mixed Sequential Aldol-Aldol Reactions -- 4.7 Double Aldol Reactions with a-Substituted Silyl Enol Ethers -- 4.7.1 Sequential Aldol-Aldol Reactions with Mixed SEEs -- 4.7.2 Propionaldehyde Aldol-Aldol Cascade Reactions -- 4.7.3 Haloacetaldehyde Aldol-Aldol Cascades -- 4.8 Stereochemical Considerations -- 4.9 Aldol Reactions of b-Supersiloxy Methyl Ketones -- 4.10 Total Synthesis of Natural Products Using Supersilyl Aldol Reactions -- 4.11 Conclusion and Outlook -- References -- 5 Asymmetric Induction in Aldol Additions -- 5.1 Introduction -- 5.2 Asymmetric Induction Using Chiral Ketones -- 5.2.1 1,4-Asymmetric Induction Using a-Alkyl Ketones -- 5.2.2 1,4-Asymmetric Induction Using a-Methyl-b-Branched Ketones -- 5.2.3 1,4-Asymmetric Induction Using a-Alkoxy Ketones -- 5.2.4 1,5-Asymmetric Induction Using b-Alkoxy Methyl Ketones -- 5.2.5 1,6-Asymmetric Induction Using Chiral Methyl Ketones -- 5.3 Asymmetric Induction Using Chiral Aldehydes -- 5.3.1 1,2-Asymmetric Induction Using Chiral Aldehydes -- 5.3.2 1,3-Asymmetric Induction Using Chiral Aldehydes -- 5.3.3 Asymmetric Induction Using a-Methyl-b-Alkoxy Aldehydes -- 5.3.4 Asymmetric Induction Using a,b-Bisalkoxy Aldehydes.

5.4 Asymmetric Induction in the Aldol Addition of Chiral Enolates to Chiral Aldehydes -- References -- 6 Polypropionate Synthesis via Substrate-Controlled Stereoselective Aldol Couplings of Chiral Fragments -- 6.1 Introduction -- 6.2 Principles of Stereoselective Aldol Reactions -- 6.2.1 Relative Topicity -- 6.2.2 Chiral Reactants -- 6.2.2.1 Diastereoface Selectivity of Chiral Ethyl Ketones -- 6.2.2.2 Diastereoface Selectivity of Chiral Aldehydes -- 6.2.2.3 Multiplicativity Rule -- 6.3 Stereoselective Aldol Coupling of Chiral Reactants -- 6.3.1 2-Alkoxy-1-Methylethyl Ethyl Ketones: Paterson's Dipropionate Equivalent -- 6.3.1.1 Reactions with Achiral Aldehydes -- 6.3.1.2 Reactions with Chiral Aldehydes -- 6.3.2 1-Methylalkyl Ethyl Ketones: 3-Deoxy Polypropionate Equivalents -- 6.4 2-Alkoxyalkyl Ethyl Ketones: 2-Desmethyl Polypropionate Equivalents -- 6.4.1 2-Alkoxy-1-Methylalkyl Ethyl Ketones: Polypropionate Equivalents -- 6.4.1.1 (E) Boron Enolates -- 6.4.1.2 (Z) Boron Enolates -- 6.4.1.3 Silyl Enolates -- 6.4.1.4 Lithium Enolates -- 6.4.1.5 Titanium Enolates -- 6.4.1.6 Tin Enolates -- 6.5 Conclusions -- References -- 7 Application of Oxazolidinethiones and Thiazolidinethiones in Aldol Additions -- 7.1 Introduction -- 7.2 Preparation of Oxazolidinethione and Thiazolidinethione Chiral Auxiliaries -- 7.3 Acylation of Oxazolidinethione and Thiazolidinethione Chiral Auxiliaries -- 7.4 Propionate Aldol Additions -- 7.5 Acetate Aldol Additions -- 7.6 Glycolate Aldol Additions -- 7.6.1 Synthetic Applications of Aldol Additions of N-Propionyl Oxazolidinethiones and Thiazolidinethiones and Their Substituted Variants -- 7.6.2 Synthetic Applications of Aldol Additions of N-Acetyloxazolidinethiones and Thiazolidinethiones -- 7.6.3 Synthetic Applications of anti-Aldol Additions of N-Glycolyloxazolidinethiones -- References.

8 Enzyme-Catalyzed Aldol Additions -- 8.1 Introduction -- 8.2 Pyruvate Aldolases -- 8.3 N-Acetylneuraminic Acid Aldolase (NeuA) -- 8.3.1 Novel NeuA Biocatalyst by Protein Engineering -- 8.3.2 Large-Scale Process -- 8.3.3 Related Pyruvate Aldolases/2-Oxobutyrate Aldolases -- 8.4 Dihydroxyacetone Phosphate (DHAP) Aldolases -- 8.4.1 Structure and Mechanism -- 8.4.2 L-Rhamnulose-1-Phosphate Aldolase as a DHA-Dependent Aldolase -- 8.5 D-Fructose-6-Phosphate Aldolase and Transaldolase B Phe178Tyr: FSA-Like Aldolases -- 8.6 2-Deoxy-D-Ribose-5-Phosphate Aldolase (RibA or DERA -- EC 4.1.2.4) -- 8.7 Glycine/Alanine Aldolases -- 8.8 Aldol Reactions Catalyzed by Non aldolases -- 8.9 Conclusions and Perspectives -- 8.9.1 Substrate Tolerance/Stereoselectivity -- 8.9.2 Future Perspectives -- References -- Index.
Abstract:
The selective formation of bondings between molecules is one of the major challenges in organic chemistry, and the so-called aldol reaction is one of the most important for this purpose. These reactions are a highly useful tool for developing such novel substances as natural products and pharmaceuticals. Likes its highly successful and much appreciated predecessor, "Modern Aldol Reactions", this ready reference provides a systematic overview of methodologies for installing a required configuration during an aldol addition step, but shifts the focus so as to cover the latest developments. As such, it presents a set of brand new tools, including vinylogous Mukaiyama-aldol reactions and substrate-controlled aldol reactions, as well as asymmetric induction in aldol additions. Furthermore, new developments in existing stereoselective aldol additions are described, such as the deployment of supersilyl groups or organocatalyzed aldol additions. All of these methodologies are presented in the context of their deployment in the total synthesis of natural products.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: