Cover image for Pattern Classification Using Ensemble Methods.
Pattern Classification Using Ensemble Methods.
Title:
Pattern Classification Using Ensemble Methods.
Author:
Rokach, Lior.
ISBN:
9789814271073
Personal Author:
Physical Description:
1 online resource (242 pages)
Series:
Series in Machine Perception and Artificial Intelligence ; v.75

Series in Machine Perception and Artificial Intelligence
Contents:
Contents -- Preface -- 1. Introduction to Pattern Classi.cation -- 1.1 Pattern Classification -- 1.2 Induction Algorithms -- 1.3 Rule Induction -- 1.4 Decision Trees -- 1.5 Bayesian Methods -- 1.5.1 Overview. -- 1.5.2 NaıveBayes -- 1.5.2.1 The Basic Naıve Bayes Classifier -- 1.5.2.2 Naıve Bayes Induction for Numeric Attributes -- 1.5.2.3 Correction to the Probability Estimation -- 1.5.2.4 Laplace Correction -- 1.5.2.5 No Match -- 1.5.3 Other Bayesian Methods -- 1.6 Other Induction Methods -- 1.6.1 Neural Networks -- 1.6.2 Genetic Algorithms -- 1.6.3 Instance-based Learning -- 1.6.4 Support Vector Machines -- 2. Introduction to Ensemble Learning -- 2.1 Back to the Roots -- 2.2 The Wisdom of Crowds -- 2.3 The Bagging Algorithm -- 2.4 The Boosting Algorithm -- 2.5 The AdaBoost Algorithm -- 2.6 No Free Lunch Theorem and Ensemble Learning -- 2.7 Bias-Variance Decomposition and Ensemble Learning -- 2.8 Occam's Razor and Ensemble Learning -- 2.9 Classifier Dependency -- 2.9.1 DependentMethods -- 2.9.1.1 Model-guided Instance Selection -- 2.9.1.2 Basic Boosting Algorithms -- 2.9.1.3 Advanced Boosting Algorithms -- 2.9.1.4 Incremental Batch Learning -- 2.9.2 Independent Methods -- 2.9.2.1 Bagging -- 2.9.2.2 Wagging -- 2.9.2.3 Random Forest and Random Subspace Projection -- 2.9.2.4 Non-Linear Boosting Projection (NLBP) -- 2.9.2.5 Cross-validated Committees -- 2.9.2.6 Robust Boosting -- 2.10 Ensemble Methods for Advanced Classification Tasks -- 2.10.1 Cost-Sensitive Classification -- 2.10.2 Ensemble for Learning Concept Drift -- 2.10.3 Reject Driven Classification -- 3. Ensemble Classification -- 3.1 Fusions Methods -- 3.1.1 Weighting Methods -- 3.1.2 Majority Voting -- 3.1.3 Performance Weighting -- 3.1.4 Distribution Summation -- 3.1.5 Bayesian Combination -- 3.1.6 Dempster-Shafer -- 3.1.7 Vogging -- 3.1.8 Naıve Bayes -- 3.1.9 Entropy Weighting.

3.1.10 Density-based Weighting -- 3.1.11 DEA Weighting Method -- 3.1.12 Logarithmic Opinion Pool -- 3.1.13 Order Statistics -- 3.2 Selecting Classification -- 3.2.1 Partitioning the Instance Space -- 3.2.1.1 The K-Means Algorithm as a Decomposition Tool -- 3.2.1.2 Determining the Number of Subsets -- 3.2.1.3 The Basic K-Classifier Algorithm -- 3.2.1.4 The Heterogeneity Detecting K-Classifier (HDK-Classifier) -- 3.2.1.5 Running-Time Complexity -- 3.3 Mixture of Experts and Meta Learning -- 3.3.1 Stacking -- 3.3.2 Arbiter Trees -- 3.3.3 Combiner Trees -- 3.3.4 Grading -- 3.3.5 Gating Network -- 4. Ensemble Diversity -- 4.1 Overview -- 4.2 Manipulating the Inducer -- 4.2.1 Manipulation of the Inducer's Parameters -- 4.2.2 Starting Point in Hypothesis Space -- 4.2.3 Hypothesis Space Traversal -- 4.3 Manipulating the Training Samples -- 4.3.1 Resampling -- 4.3.2 Creation -- 4.3.3 Partitioning -- 4.4 Manipulating the Target Attribute Representation -- 4.4.1 Label Switching -- 4.5 Partitioning the Search Space -- 4.5.1 Divide and Conquer -- 4.5.2 Feature Subset-based Ensemble Methods -- 4.5.2.1 Random-based Strategy -- 4.5.2.2 Reduct-based Strategy -- 4.5.2.3 Collective-Performance-based Strategy -- 4.5.2.4 Feature Set Partitioning -- 4.5.2.5 Rotation Forest -- 4.6 Multi-Inducers -- 4.7 Measuring the Diversity -- 5. Ensemble Selection -- 5.1 Ensemble Selection -- 5.2 Pre Selection of the Ensemble Size -- 5.3 Selection of the Ensemble Size While Training -- 5.4 Pruning - Post Selection of the Ensemble Size -- 5.4.1 Ranking-based -- 5.4.2 Search based Methods -- 5.4.2.1 Collective Agreement-based Ensemble PruningMethod -- 5.4.3 Clustering-based Methods -- 5.4.4 Pruning Timing -- 5.4.4.1 Pre-combining Pruning -- 5.4.4.2 Post-combining Pruning -- 6. Error Correcting Output Codes -- 6.1 Code-matrix Decomposition of Multiclass Problems.

6.2 Type I - Training an Ensemble Given a Code-Matrix -- 6.2.1 Error correcting output codes -- 6.2.2 Code-Matrix Framework -- 6.2.3 Code-matrix Design Problem -- 6.2.4 Orthogonal Arrays (OA) -- 6.2.5 Hadamard Matrix -- 6.2.6 Probabilistic Error Correcting Output Code -- 6.2.7 Other ECOC Strategies -- 6.3 Type II - Adapting Code-matrices to the Multiclass Problems -- 7. Evaluating Ensembles of Classifiers -- 7.1 Generalization Error -- 7.1.1 Theoretical Estimation of Generalization Error -- 7.1.2 Empirical Estimation of Generalization Error -- 7.1.3 Alternatives to the Accuracy Measure -- 7.1.4 The F-Measure -- 7.1.5 Confusion Matrix -- 7.1.6 Classifier Evaluation under Limited Resources -- 7.1.6.1 ROC Curves -- 7.1.6.2 Hit Rate Curve -- 7.1.6.3 Qrecall (Quota Recall) -- 7.1.6.4 Lift Curve -- 7.1.6.5 Pearson Correlation Coefficient -- 7.1.6.6 Area Under Curve (AUC) -- 7.1.6.7 Average Hit Rate -- 7.1.6.8 Average Qrecall -- 7.1.6.9 Potential Extract Measure (PEM) -- 7.1.7 Statistical Tests for Comparing Ensembles -- 7.1.7.1 McNemar's Test -- 7.1.7.2 A Test for the Difference of Two Proportions -- 7.1.7.3 The Resampled Paired t Test -- 7.1.7.4 The k-fold Cross-validated Paired t Test -- 7.2 Computational Complexity -- 7.3 Interpretability of the Resulting Ensemble -- 7.4 Scalability to Large Datasets -- 7.5 Robustness -- 7.6 Stability -- 7.7 Flexibility -- 7.8 Usability -- 7.9 Software Availability -- 7.10 Which Ensemble Method Should be Used? -- Bibliography -- Index.
Abstract:
Researchers from various disciplines such as pattern recognition, statistics, and machine learning have explored the use of ensemble methodology since the late seventies. Thus, they are faced with a wide variety of methods, given the growing interest in the field. This book aims to impose a degree of order upon this diversity by presenting a coherent and unified repository of ensemble methods, theories, trends, challenges and applications. The book describes in detail the classical methods, as well as the extensions and novel approaches developed recently. Along with algorithmic descriptions of each method, it also explains the circumstances in which this method is applicable and the consequences and the trade-offs incurred by using the method. Sample Chapter(s). Chapter 1: Introduction to Pattern Classification (246 KB). Contents: Introduction to Pattern Classification; Introduction to Ensemble Learning; Ensemble Classification; Ensemble Diversity; Ensemble Selection; Error Correcting Output Codes; Evaluating Ensembles of Classifiers. Readership: Researchers, advanced undergraduate and graduate students in machine learning and pattern recognition.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: