Cover image for Non-Lte Radiative Transfer in the Atmosphere.
Non-Lte Radiative Transfer in the Atmosphere.
Title:
Non-Lte Radiative Transfer in the Atmosphere.
Author:
López-Puertas, M.
ISBN:
9789812811493
Personal Author:
Physical Description:
1 online resource (506 pages)
Series:
Series on Atmospheric, Oceanic and Planetary Physics ; v.3

Series on Atmospheric, Oceanic and Planetary Physics
Contents:
Contents -- Preface -- Chapter 1 Introduction and Overview -- 1.1 General Introduction -- 1.2 Basic Properties of the Earth's Atmosphere -- 1.2.1 Thermal structure -- 1.2.2 Composition -- 1.2.3 Energy balance -- 1.3 What is LTE? -- 1.4 Non-LTE Situations -- 1.5 The Importance of Non-LTE -- 1.6 Some Historical Background -- 1.7 Non-LTE Models -- 1.8 Experimental Studies of Non-LTE -- 1.9 Non-LTE in Planetary Atmospheres -- 1.10 References and Further Reading -- Chapter 2 Molecular Spectra -- 2.1 Introduction -- 2.2 Energy Levels in Diatomic Molecules -- 2.2.1 The Born-Oppenheimer approximation -- 2.2.2 Rotation of diatomic molecules -- 2.2.3 Vibrations of diatomic molecules -- 2.2.4 Breakdown of the Born-Oppenheimer approximation -- 2.3 Energy Levels in Polyatomic Molecules -- 2.3.1 General -- 2.3.2 Rotation of polyatomic molecules -- 2.3.3 Vibration of polyatomic molecules -- 2.4 Transitions and Spectral Bands -- 2.4.1 The vibration-rotation band -- 2.4.2 Hot bands -- 2.4.3 Overtone bands -- 2.4.4 Isotope bands -- 2.4.5 Combination bands -- 2.5 Properties of Individual Vibration-Rotation Lines -- 2.5.1 Spectral line strength -- 2.5.2 Widths and shapes of spectral lines -- 2.6 Interactions between Energy Levels -- 2.6.1 Fermi resonance -- 2.6.2 Coriolis interaction -- 2.6.3 Vibration-vibration transfer -- 2.7 References and Further Reading -- Chapter 3 Basic Atmospheric Radiative Transfer -- 3.1 Introduction -- 3.2 Properties of Radiation -- 3.3 The Radiative Transfer Equation -- 3.4 The Formal Solution of the Radiative Transfer Equation -- 3.5 Thermodynamic Equilibrium and Local Thermodynamic Equilibrium -- 3.6 The Source Function in Non-LTE -- 3.6.1 The two-level approach -- 3.6.2 The Einstein relations -- 3.6.3 Radiative processes.

3.6.4 Thermal collisional processes: the statistical equilibrium equation -- 3.6.5 Non-thermal processes -- 3.6.6 The multilevel case -- 3.7 Non-LTE Situations -- 3.7.1 The classical case of non-LTE -- 3.7.2 Non-classical non-LTE situations -- 3.8 References and Further Reading -- Chapter 4 Solutions to the Radiative Transfer Equation in LTE -- 4.1 Introduction -- 4.2 Integration of the Radiative Transfer Equation over Height -- 4.2.1 The RTE in the plane-parallel approach -- 4.2.2 Solar radiation -- 4.2.3 Atmospheric sphericity -- 4.2.4 The radiative equilibrium temperature profile -- 4.2.5 Heating and cooling rates -- 4.2.6 The 'cooling-to-space' approximation -- 4.2.7 The opaque approximation -- 4.3 Integration of the Radiative Transfer Equation over Frequency -- 4.3.1 Special line-by-line integration techniques -- 4.3.2 Spectral band models -- 4.3.3 Independent-line and single-line models -- 4.3.4 Band models with overlapping lines -- 4.3.5 The regular or Elsasser model -- 4.3.6 Random band models -- 4.3.7 Empirical models -- 4.3.8 The 'sum of exponentials' method -- 4.3.9 Inhomogeneous optical paths -- 4.4 Integration of the Radiative Transfer Equation over Solid Angle -- 4.5 References and Further Reading -- Chapter 5 Solutions to the Radiative Transfer Equation in Non-LTE -- 5.1 Introduction -- 5.2 Simple Solutions for Radiative Transfer under Non-LTE -- 5.2.1 Weak radiative field -- 5.2.2 Strong external radiative source -- 5.2.3 Non-thermal collisional and chemical processes -- 5.3 The Full Solution of the Radiative Transfer Equation in Non-LTE -- 5.4 Integration of the RTE in Non-LTE -- 5.4.1 Integrations over frequency and solid angle -- 5.4.2 Integration over altitude -- 5.4.3 Specific non-LTE formulations -- 5.5 Intercomparison of Non-LTE Codes.

5.6 Parameterizations of the Non-LTE Cooling Rate -- 5.7 The Curtis Matrix Method -- 5.8 References and Further Reading -- Chapter 6 Non-LTE Modelling of the Earth's Atmosphere I: CO2 -- 6.1 Introduction -- 6.2 Useful Approximations -- 6.2.1 Induced emission -- 6.2.2 Rotational LTE -- 6.2.3 Resonant levels -- 6.2.4 Line overlapping -- 6.3 Carbon Dioxide CO2 -- 6.3.1 Adoption of a reference atmosphere -- 6.3.2 Boundary layers -- 6.3.3 Radiative processes -- 6.3.4 Collisional processes -- 6.3.5 Solution of the multilevel system -- 6.3.6 Non-LTE populations -- 6.4 References and Further Reading -- Chapter 7 Non-LTE Modelling of the Earth's Atmosphere II: Other Infrared Emitters -- 7.1 Introduction -- 7.2 Carbon Monoxide CO -- 7.2.1 Radiative processes -- 7.2.2 Collisional processes -- 7.2.3 Non-LTE populations -- 7.2.4 Uncertainties in the CO(1) population -- 7.3 Ozone O3 -- 7.3.1 Non-LTE model -- 7.3.2 Chemical recombination -- 7.3.3 Collisional relaxation -- 7.3.4 Other excitation processes -- 7.3.5 Solution of the system -- 7.3.6 Non-LTE populations -- 7.4 Water Vapour H2O -- 7.4.1 Radiative processes -- 7.4.2 Collisional processes -- 7.4.3 Non-LTE populations -- 7.4.4 Uncertainties in the H2O populations -- 7.5 Methane CH4 -- 7.5.1 Radiative processes -- 7.5.2 Collisional processes -- 7.5.3 Non-LTE populations -- 7.5.4 Uncertainties in the CH4 populations -- 7.6 Nitric Oxide NO -- 7.6.1 Radiative processes -- 7.6.2 Collisional relaxation of the rotational and spin states -- 7.6.3 Vibrational-translational collisions and chemical production -- 7.6.4 Non-LTE populations -- 7.7 Nitrogen Dioxide NO2 -- 7.7.1 Excitation and relaxation processes -- 7.7.2 Non-LTE populations -- 7.7.3 Uncertainty in the NO2 populations -- 7.8 Nitrous Oxide N2O -- 7.8.1 Collisional processes -- 7.8.2 Non-LTE populations.

7.8.3 Uncertainties in the N2O populations -- 7.9 Nitric Acid HNO3 -- 7.10 Hydroxyl Radical OH -- 7.11 Molecular Oxygen Atmospheric Infrared Bands -- 7.12 Hydrogen Chloride HC1 and Hydrogen Fluoride HF -- 7.13 NO+ -- 7.14 Atomic Oxygen O(3P) at 63µm -- 7.15 References and Further Reading -- Chapter 8 Remote Sensing of the Non-LTE Atmosphere -- 8.1 Introduction -- 8.2 The Analysis of Emission Measurements -- 8.2.1 Limb observations -- 8.2.2 The limb radiance under optically thin conditions -- 8.2.3 Summary of observations -- 8.3 Observations of Carbon Dioxide in Emission -- 8.3.1 Observations of the CO2 15µm emission -- 8.3.2 Observations of the CO2 10µm emission -- 8.3.3 CO2 4.3µm emission observed by rockets -- 8.3.4 CO2 4.3µm. emission observed by Nimbus 7 SAMS -- 8.3.5 CO2 4.3µm emission observed by UARS ISAMS -- 8.4 Observations of Ozone in Emission -- 8.5 Observations of Water Vapour in Emission -- 8.6 Observations of Carbon Monoxide in Emission -- 8.7 Observations of Nitric Oxide in Emission -- 8.8 Observations of Other Infrared Emissions -- 8.9 Rotational non-LTE -- 8.10 Absorption Measurements -- 8.10.1 The ATMOS experiment -- 8.10.2 CO2 V2 vibrational temperatures -- 8.10.3 CO2 abundance -- 8.11 Simulated Limb Emission Spectra at High Resolution -- 8.12 Simulated Nadir Emission Spectra at High Resolution -- 8.13 Non-LTE Retrieval Schemes -- 8.14 References and Further Reading -- Chapter 9 Cooling and Heating Rates -- 9.1 Introduction -- 9.2 C02 15µm Cooling -- 9.2.1 Cooling rate profiles -- 9.2.2 Global distribution -- 9.3 O3 9.6µm Cooling -- 9.4 H2O 6.3µm Cooling -- 9.5 NO 5.3µm Cooling -- 9.6 O(3P1) 63µm Cooling -- 9.7 Summary of Cooling Rates -- 9.8 CO2 Solar Heating -- 9.8.1 Thermalization of the O(1D) energy -- 9.8.2 Uncertainties in the heating rates -- 9.8.3 Global distribution.

9.9 References and Further Reading -- Chapter 10 Non-LTE in Planetary Atmospheres -- 10.1 Introduction -- 10.2 The Terrestrial Planets: Mars and Venus -- 10.3 A Non-LTE Model for the Martian and Venusian Atmospheres -- 10.3.1 Radiative processes -- 10.3.2 Collisional processes -- 10.4 Mars -- 10.4.1 Reference atmosphere -- 10.4.2 Night-time populations of CO2 and CO -- 10.4.3 Daytime populations -- 10.4.4 Variability and uncertainties in the populations of CO2 -- 10.4.5 Cooling rates -- 10.4.6 Variability and uncertainties in the cooling rates -- 10.4.7 Heating rates -- 10.4.8 Variability and uncertainties in the heating rates -- 10.4.9 Radiative equilibrium temperature -- 10.5 Venus -- 10.5.1 Reference atmosphere -- 10.5.2 Night-time populations of CO2 -- 10.5.3 Daytime populations of CO2 -- 10.5.4 Cooling rates -- 10.5.5 Heating rates -- 10.5.6 Radiative equilibrium temperature -- 10.5.7 Variability and uncertainties -- 10.6 Outer Planets -- 10.7 Titan -- 10.8 Comets -- 10.9 References and Further Reading -- Appendix A List of Symbols Abbreviations and Acronyms -- A.1 List of Symbols -- A.2 List of Abbreviations and Acronyms -- A.3 List of Chemical Species -- Appendix B Physical Constants and Useful Data -- B.1 General and Universal Constants -- B.2 Planetary Characteristics -- Appendix C Terminology and Units -- Appendix D The Planck Function -- Appendix E Conversion Factors and Formulae -- Appendix F CO2 Infrared Bands -- Appendix G O3 Infrared Bands -- Figure Credits -- Bibliography -- Index.
Abstract:
During the last three decades, it has become increasingly clear that atmospheric modelling and remote sounding of the atmosphere from space, to name just two important application areas, are affected by non-equilibrium processes which have not been incorporated into traditional radiative transfer calculations. These processes, dubbed "non-LTE", are therefore the subject of growing interest among scholars and researchers dealing with the upper atmosphere. This important book provides the first comprehensive and "global" description of non-LTE infrared emissions in the atmosphere of the Earth and other planets, starting with the theoretical foundations and progressing to the most important applications. Besides giving an introduction to this complex subject, it is a guide to the state-of-the-art in incorporating non-LTE processes into radiative transfer algorithms and computer models of the atmosphere. Numerous examples are presented of the application of these methods to (a) atmospheric remote sensing, (b) atmospheric energy budget (cooling and heating rate) calculations, and (c) atmospheres other than the Earth's. Contents: Introduction and Overview; Molecular Spectra; Basic Atmospheric Radiative Transfer; Solutions to the Radiative Transfer Equation in LTE; Solutions to the Radiative Transfer Equation in Non-LTE; Non-LTE Modelling of the Earth's Atmosphere I: CO 2; Non-LTE Modelling of the Earth's Atmosphere II: Other Infrared Emitters; Remote Sensing of the Non-LTE Atmosphere; Cooling and Heating Rates; Non-LTE in Planetary Atmospheres. Readership: Graduate students and researchers in meteorology, astrophysics and environmental chemistry.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: