Cover image for Modern Tools for the Synthesis of Complex Bioactive Molecules.
Modern Tools for the Synthesis of Complex Bioactive Molecules.
Title:
Modern Tools for the Synthesis of Complex Bioactive Molecules.
Author:
Cossy, Janine.
ISBN:
9781118342855
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (600 pages)
Contents:
MODERN TOOLS FOR THE SYNTHESIS OF COMPLEX BIOACTIVE MOLECULES -- CONTENTS -- FOREWORD -- PREFACE -- CONTRIBUTORS -- CHAPTER 1: C-H FUNCTIONALIZATION: A NEW STRATEGY FOR THE SYNTHESIS OF BIOLOGICALLY ACTIVE NATURAL PRODUCTS -- 1.1. INTRODUCTION -- 1.2. PALLADIUM(0)-CATALYZED INTRAMOLECULAR DIRECT ARYLATION -- 1.3. PALLADIUM(0)-CATALYZED INTRAMOLECULAR ALKENYLATION OF sp2 C-H BONDS -- 1.4. PALLADIUM(0)-CATALYZED INTRAMOLECULAR ARYLATION OF sp3 C-H BONDS -- 1.5. PALLADIUM(II)-MEDIATED INTRAMOLECULAR OXIDATIVE ALKENYLATION OF sp2 C-H BONDS -- 1.6. DIRECTING GROUP-ASSISTED PALLADIUM(II)- ENABLED CARBON-CARBON BOND FORMATION AT sp3 C-H BONDS -- 1.7. PLATINUM(II)-MEDIATED ALKANE DEHYDROGENATION -- 1.8. PALLADIUM(II)-ENABLED CARBON-OXYGEN BOND FORMATION AT sp3 C-H BONDS -- 1.9. IRIDIUM-CATALYZED BORYLATION OF sp2 C-H BONDS -- 1.10. RHODIUM(I)-CATALYZED INTRAMOLECULAR DIRECTED ALKYLATION OF sp2 C-H BONDS -- 1.11. RHODIUM(III)-CATALYZED SYNTHESIS OF NITROGEN-CONTAINING HETEROCYCLES -- 1.12. CONCLUSION -- REFERENCES -- CHAPTER 2: THE NEGISHI CROSS-COUPLING IN THE SYNTHESIS OF NATURAL PRODUCTS AND BIOACTIVE MOLECULES -- 2.1. INTRODUCTION -- 2.2. SYNTHESIS OF NATURAL PRODUCTS -- 2.2.1. Synthesis of Polyenes -- 2.2.2. Synthesis of Amino Acids and Macrocyclic Peptides -- 2.2.3. Synthesis of Macrocycles -- 2.2.4. Synthesis of Small Heterocycles -- 2.3. LARGE-SCALE SYNTHESIS OF BIOLOGICALLY ACTIVE MOLECULES -- 2.3.1. Nonsteroidal Ligand A-224817.0 1A -- 2.3.2. Phosphodiesterase Inhibitor PDE472 -- 2.3.3. Reverse Transcriptase Inhibitor MIV-150 -- 2.3.4. B-Raf Kinase Inhibitors -- 2.3.5. mGluR1 Antagonist -- 2.4. CONCLUSION -- REFERENCES -- CHAPTER 3: METAL-CATALYZED C-HETEROATOM CROSS-COUPLING REACTIONS -- 3.1. GENERAL INTRODUCTION -- 3.2. BUCHWALD-HARTWIG-TYPE REACTIONS -- 3.2.1. Introduction -- 3.2.2. Mechanism -- 3.2.3. Scope and Limitations.

3.2.4. Applications in the Synthesis of Complex Bioactive Molecules -- 3.2.5. C-N Bond Formation -- 3.2.6. C-S and C-O Bond Formation -- 3.3. ULLMANN-TYPE REACTIONS -- 3.3.1. Introduction -- 3.3.2. Mechanism -- 3.3.3. Scope and Limitations -- 3.3.4. Applications in the Synthesis of Complex Bioactive Molecules -- 3.3.5. C-N Bond Formation -- 3.3.6. C-O Bond Formation -- 3.4. MISCELLANEOUS -- 3.4.1. Chan-Lam-Evans -- 3.4.2. Iron/Copper-Mediated Methodologies -- 3.4.3. Other Metals -- 3.5. CONCLUSION -- REFERENCES -- CHAPTER 4: GOLDEN OPPORTUNITIES IN THE SYNTHESIS OF NATURAL PRODUCTS AND BIOLOGICALLY ACTIVE COMPOUNDS -- 4.1. INTRODUCTION -- 4.2. GOLD-CATALYZED FORMATION OF OXYGEN-CONTAINING HETEROCYCLES -- 4.2.1. Cyclizations Leading to Furan and Pyran Derivatives -- 4.2.2. Spiroketalizations -- 4.2.3. Other Transformations -- 4.3. GOLD-CATALYZED FORMATION OF NITROGEN-CONTAINING HETEROCYCLES -- 4.3.1. Cyclizations Involving the Formation of a New C-N Bond -- 4.3.2. Cyclizations Involving the Formation of a New C-C Bond -- 4.4. GOLD-CATALYZED FORMATION OF CARBOCYCLES -- 4.4.1. Cyclizations Involving the Formation of a Single New C-C Bond -- 4.4.2. Cyclizations Involving the Formation of Several New C-C Bonds -- 4.5. OTHER GOLD-CATALYZED REACTIONS -- 4.6. CONCLUSION -- REFERENCES -- CHAPTER 5: METATHESIS-BASED SYNTHESIS OF COMPLEX BIOACTIVES -- 5.1. INTRODUCTION -- 5.2. RING-CLOSING OLEFIN METATHESIS -- 5.3. RING-CLOSING ALKYNE METATHESIS -- 5.4. ALKENE CROSS-METATHESIS -- 5.5. ENYNE METATHESIS -- 5.6. TETHERED METATHESIS -- 5.7. RELAY METATHESIS -- 5.8. TANDEM METATHESIS -- 5.9. ASYMMETRIC RCM AND ROM -- 5.10. CONCLUSION -- REFERENCES -- CHAPTER 6: ENANTIOSELECTIVE ORGANOCATALYSIS: A POWERFUL TOOL FOR THE SYNTHESIS OF BIOACTIVE MOLECULES -- 6.1. INTRODUCTION -- 6.2. CARBON-CARBON BOND FORMATION -- 6.2.1. Direct Aldol Reaction -- 6.2.2. Mannich Reaction.

6.2.3. Michael Reaction -- 6.2.4. Diels-Alder Reaction -- 6.2.5. Pictet-Spengler Reaction -- 6.2.6. SOMO Reaction -- 6.3. HETEROATOM INSTALLATION -- 6.3.1. Epoxidation of Alkene -- 6.3.2. α-Aminoxylation -- 6.3.3. α-Amination -- 6.4. CASCADE REACTION -- 6.5. CONCLUSION -- REFERENCES -- CHAPTER 7: ASYMMETRIC PHASE-TRANSFER CATALYSIS -- 7.1. INTRODUCTION -- 7.2. ALKYLATION -- 7.2.1. Asymmetric Synthesis of α-Alkyl α-Amino Acids -- 7.2.2. Asymmetric Synthesis of α,α-Dialkyl α-Amino Acids -- 7.2.3. Alkylation of Peptides -- 7.3. MICHAEL ADDITION -- 7.4. ALDOL AND MANNICH REACTIONS -- 7.5. EPOXIDATION AND AZIRIDINATION -- 7.6. STRECKER REACTION -- 7.7. CYCLIZATION -- 7.8. AMINATION -- 7.9. FLUORINATION -- 7.10. CONCLUSION -- REFERENCES -- CHAPTER 8: REARRANGEMENTS IN NATURAL PRODUCT SYNTHESIS -- 8.1. INTRODUCTION -- 8.2. THE COPE AND OXY-COPE REARRANGEMENTS -- 8.2.1. The Cope Rearrangement -- 8.2.2. The Oxy-Cope Rearrangement -- 8.3. THE CLAISEN REARRANGEMENT -- 8.4. THE OVERMAN REARRANGEMENT -- 8.5. THE PETASIS-FERRIER REARRANGEMENT -- 8.6. THE PRINS-PINACOL REARRANGEMENT -- 8.7. THE [1,2]- AND [2,3]-WITTIG REARRANGEMENTS -- 8.8. THEMEYER-SCHUSTERANDRUPEREARRANGEMENTS -- REFERENCES -- CHAPTER 9: DOMINO REACTIONS IN THE ENANTIOSELECTIVE SYNTHESIS OF BIOACTIVE NATURAL PRODUCTS -- 9.1. INTRODUCTION -- 9.2. CATIONIC DOMINO REACTIONS -- 9.3. ANIONIC DOMINO REACTIONS -- 9.3.1. Domino Reactions with Michael Additions as the Initiating Step -- 9.3.2. Domino Reactions with Aldol Reactions as the Initiating Step -- 9.3.3. Nucleophilic Substitutions, 1,2-Additions, or Other Reactions as the Initiating Step -- 9.4. RADICAL DOMINO REACTIONS -- 9.5. PERICYCLIC REACTIONS -- 9.6. PHOTOCHEMICALLY INDUCED DOMINO REACTIONS -- 9.7. TRANSITION METAL-CATALYZED DOMINO REACTIONS -- 9.7.1. Pd-Catalyzed Domino Reactions -- 9.7.2. Rhodium-Catalyzed Domino Reactions.

9.7.3. Ruthenium-Catalyzed Domino Reactions Applying Metatheses -- 9.8. OXIDATIVE OR REDUCTIVE DOMINO REACTIONS -- 9.8.1. Domino Reactions Initiated by Oxidation -- 9.8.2. Domino Reactions Initiated by Reduction -- REFERENCES -- CHAPTER 10: FLUOROUS LINKER-FACILITATED SYNTHESIS OF BIOLOGICALLY INTERESTING MOLECULES -- 10.1. INTRODUCTION -- 10.2. FLUOROUS PROTECTIVE LINKER FOR THE SYNTHESIS OF NATURAL PRODUCT ANALOGUES -- 10.3. FLUOROUS DISPLACEABLE LINKERS FOR THE SYNTHESIS OF HETEROCYCLIC COMPOUNDS -- 10.4. FLUOROUS DIVERSITY ORIENTED SYNTHESIS (DOS) -- 10.5. FLUOROUS MIXTURE SYNTHESIS -- 10.6. SUMMARY -- REFERENCES -- CHAPTER 11: THE EVOLUTION OF IMMOBILIZED REAGENTS AND THEIR APPLICATION IN FLOW CHEMISTRY FOR THE SYNTHESIS OF NATURAL PRODUCTS AND PHARMACEUTICAL COMPOUNDS -- 11.1. BACKGROUND -- 11.2. MULTISTEP SYNTHESIS OF NATURAL PRODUCTS AND BIOACTIVE MATERIALS USING IMMOBILIZED REAGENTS -- 11.3. FLOW CHEMICAL SYNTHESIS -- 11.4. FLOW SYNTHESIS OF CHEMICAL BUILDING BLOCKS -- 11.4.1. Butane-2, 3-Diacetal-Protected Diols -- 11.4.2. Yne-Ones and Pyrazoles as Primary Building Blocks -- 11.4.3. Curtius Rearrangement -- 11.4.4. Fluorination Reactions -- 11.4.5. Seyferth-Gilbert Homologation Using the Bestmann- Ohira Reagent for the Formation of Acetylenes and Triazoles -- 11.4.6. 3-Nitropyrrolidine Building Blocks -- 11.4.7. 4,5-Disubstituted Oxazoles as Building Blocks -- 11.5. MULTISTEP FLOW SYNTHESIS OF NATURAL PRODUCTS AND PHARMACEUTICAL COMPOUNDS -- 11.5.1. Casein Kinase I Inhibitors -- 11.5.2. A Quinolone 5HT1B Antagonist -- 11.5.3. Imatinib Mesylate -- 11.6. CONCLUSION -- REFERENCES -- CHAPTER 12: SYNTHETIC APPROACHES TO BIOACTIVE CARBOHYDRATES -- 12.1. INTRODUCTION -- 12.1.1. Heparin Pentasaccharide Synthesis -- 12.1.2. Moenomycin Pentasaccharide Synthesis -- 12.2. 1,2-cis-EQUATORIAL GLYCOSIDES -- 12.2.1. β-Mannopyranosides.

12.2.2. β-Rhamnopyranosides -- 12.3. 1,2-trans-EQUATORIAL LINKAGES -- 12.3.1. The Globo-H Polysaccharide -- 12.3.2. Nitrile Effect -- 12.3.3. 1,2-Anhydro Sugars -- 12.3.4. Preactivation of Thioglycosides -- 12.3.5. Programmable Reactivity-Based One-Pot Strategy -- 12.3.6. Solid-Phase Synthesis of Globo-H -- 12.4. 1,2-cis-AXIAL GLYCOSIDES -- 12.4.1. Armed Galactosyl Donors -- 12.4.2. Conformational Constraint by a 4,6-O-Acetal -- 12.4.3. Boons' Participation Method -- 12.5. α-SIALIC ACID GLYCOSIDES -- 12.5.1. Synthesis of α-Sialyl Derivatives and Gangliosides -- 12.5.2. Synthesis of N-Glycolylneuraminic Acid and KDNContaining Oligosaccharides -- 12.6. URONIC ACID GLYCOSIDES -- 12.7. β-ARABINOFURANOSIDES -- 12.7.1. Cyclically Constrained Donors -- 12.7.2. β-Selective Donors with Acyclic Protecting Groups -- 12.7.3. Intramolecular Aglycon Delivery -- 12.7.4. Synthesis of Sucrose -- 12.8. CONCLUSION -- REFERENCES -- CHAPTER 13: AMMONIUM YLIDES AS BUILDING BLOCKS FOR ALKALOID SYNTHESIS -- 13.1. INTRODUCTION -- 13.2. AMMONIUM 1,3-YLIDES -- 13.2.1. Isomünchnones as Dipoles -- 13.2.2. Isothiomünchnones as Dipoles -- 13.2.3. Cross-Conjugated Heteroaromatic Betaines -- 13.2.4. Push-Pull Dipoles -- 13.2.5. Intermolecular Azomethine Ylide Cycloadditions -- 13.2.6. Intramolecular Azomethine Ylide Cycloadditions -- 13.2.7. Other Strategies -- 13.3. 1,2-AMMONIUM YLIDES -- 13.3.1. [1,2]-Rearrangements (the Stevens Rearrangement) -- 13.3.2. [2,3]-Rearrangements -- 13.4. CONCLUSION -- REFERENCES -- CHAPTER 14: PRECURSOR-DIRECTED BIOSYNTHESIS OF POLYKETIDE AND NONRIBOSOMAL PEPTIDE NATURAL PRODUCTS -- 14.1. INTRODUCTION -- 14.2. NATURAL PRODUCT BIOSYNTHESIS -- 14.2.1. Polyketide Biosynthesis -- 14.2.2. Nonribosomal Peptide Biosynthesis -- 14.3. PRECURSOR-DIRECTED BIOSYNTHESIS -- 14.3.1. Introduction -- 14.3.2. Precursor Complexity and Enzyme Tolerance.

14.3.3. Host Selection and Biosynthetic System Engineering.
Abstract:
JANINE COSSY graduated from the University of Reims working under the supervision of Prof. Jean-Pierre Pète. After a postdoctoral stay with Prof. Barry Trost (1980-1982) at the University of Wisconsin, she returned to Reims where she became Director of Research of the CNRS in 1990. The same year, she moved to Paris to become Professor of Organic Chemistry at the Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI ParisTech). She has published over 380 articles and filed thirteen patents in the field of synthetic organic chemistry and natural product synthesis. She is Associate Editor at Organic Letters since 2005. STELLIOS ARSENIYADIS was born in Greece in 1975. He studied chemistry at the Université Paris XI and received his PhD in 2002 from the Université Louis Pasteur (Strasbourg, France) working under the guidance of Dr. Charles Mioskowski. In 2001, he joined Rhodia ChiRex (Boston, USA) for an eighteen-month internship in collaboration with Prof. Stephen L. Buchwald (MIT, USA). He then spent a year as a postdoctoral fellow at Imperial College London (UK) working under the supervision of Prof. Alan C. Spivey, after which he joined Prof. K. C. Nicolaou's group at The Scripps Research Institute (La Jolla, USA) for an additional postdoc. In 2005, he was appointed by the CNRS as Chargé de Recherche in Prof. Janine Cossy's group. His research interests include the development of new synthetic tools and their application to the total synthesis of complex natural products.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: