Cover image for Bioinformatics : A Swiss Perspective.
Bioinformatics : A Swiss Perspective.
Title:
Bioinformatics : A Swiss Perspective.
Author:
Appel, Ron D.
ISBN:
9789812838780
Personal Author:
Physical Description:
1 online resource (464 pages)
Contents:
Contents -- Foreword -- Preface -- List of Contributors -- SECTION I GENES AND GENOMES -- Chapter 1 Methods for Discovery and Characterization of DNA Sequence Motifs Philipp Bucher -- 1. Introduction -- 1.1. Motif Discovery from a Biological Perspective -- 1.2. DNA Motifs from a Physical Perspective -- 2. Motif Discovery in a Nutshell -- 3. Overview of the Methods -- 3.1. Objective Functions -- 3.2. Scanning the Search Space -- 3.2.1. Finding the best consensus sequence -- 3.2.2. Optimizing a base probability matrix -- 3.2.3. Optimizing the motif annotation -- 3.2.4. Finding multiple motifs -- 3.2.5. Estimating the significance of a newly discovered motif -- 4. Bottlenecks and Limitations -- 4.1. Benchmarking Procedures for Motif Discovery -- 4.2. Why is Protein Domain Discovery Easier? -- 4.3. Reasons for the Limited Success of DNA Motif Discovery -- 5. Locally Overrepresented Sequence Motifs -- 5.1. Modification of the Problem Statements -- 5.2. Search Algorithms for Locally Overrepresented Sequence Motifs -- 6. Conclusions and Perspectives -- References -- Chapter 2 Comparative Genome Analysis Robert M. Waterhouse, Evgenia V. Kriventseva and Evgeny M. Zdobnov -- 1. Introduction -- 2. Gene Annotation -- 3. Protein Families -- 4. Orthologs and Paralogs -- 5. Genome Architecture -- 6. RNA Genes and Conserved Noncoding Sequences -- 7. Perspectives -- References -- Chapter 3 From Modules to Models: Advanced Analysis Methods for Large-Scale Data Sven Bergmann -- 1. Introduction -- 1.1. The Modular Concept -- 1.2. Regulatory Patterns are Context-Specific -- 1.3. Coclassification of Genes and Conditions -- 1.4. Complexity of the Output and Visualization -- 1.5. From Modules to Models -- 1.6. Data Integration -- 2. Modular Algorithms -- 2.1. Signature Algorithm -- 2.2. Comparative Analysis -- 2.3. Differential Clustering Algorithm.

2.4. Ping-Pong Algorithm -- 3. Module Analysis -- 3.1. Module Annotation -- 3.2. Module Visualization -- 4. Outlook -- References -- Chapter 4 Integrated Analysis of Gene Expression Profiling Studies - Examples in Breast Cancer Pratyaksha Wirapati, Darlene R. Goldstein and Mauro Delorenzi -- 1. Introduction -- 2. Combining Information -- 3. Individual Patient Data (IPD) -- 4. SwissBrod: Swiss Breast Oncology Database -- 4.1. Difficulties with Public Data Sources -- 4.2. Aim of SwissBrod -- 4.3. SwissBrod Data Curation -- 5. Spectrum of Possible Analyses -- 5.1. Pooling Raw Data -- 5.2. Pooling Adjusted Data -- 5.3. Combining Parameter Estimates -- 5.4. Combining Test Statistics -- 5.5. Combining p-values -- 5.6. Combining Statistic Ranks -- 5.7. Combining Decisions -- 6. Data Integration Methodology -- 6.1. Data Acquisition -- 6.2. Data Cleaning -- 6.3. Gene Matching -- 6.4. Outcome Modeling -- 6.5. Z-Transform for Combining Test Statistics -- 6.6. Multiple Testing -- 7. Breast Cancer Examples -- 7.1. Example I: Breast Cancer Survival -- 7.2. Example II: Breast Cancer Gene Signatures -- 7.2.1. Prototype-based coexpression module analysis -- 7.2.2. Model for identifying coexpression modules -- 7.2.3. Coexpression patterns -- 8. Conclusion -- Acknowledgments -- References -- Chapter 5 Computational Biology of Small Regulatory RNAs Mihaela Zavolan and Lukasz Jaskiewicz -- 1. Introduction -- 2. Identification of Small Regulatory RNAs -- 3. Classes of Small Regulatory RNAs -- 3.1. miRNAs -- 3.2 . Piwi-Interacting RNAs -- 4. Biogenesis of Small Regulatory RNAs -- 4.1. miRNA Biogenesis -- 4.2. Biogenesis of piRNAs -- 5. Function of Small Regulatory RNAs -- 6. MicroRNA Gene Prediction -- 6.1. What Does a miRNA Precursor Look Like? -- 6.1.1. Stable hairpin precursors -- 6.1.2. Structural constraints -- 6.1.3 . Position-dependent selection strength.

6.1.4. Sequence composition -- 6.1.5 . miRNA gene prediction methods -- 7. MicroRNA Target Prediction -- 7.1. What Does a miRNA Target Site Look Like? -- 7.2. The miRNA Seed Region -- 7.3. Structural Determinants -- 7.4. Other Determinants -- 7.5. miRNA Target Prediction Methods -- 8. Conclusions -- References -- SECTION II PROTEINS AND PROTEOMES -- Chapter 6 UniProtKB/Swiss-Prot Manual and Automated Annotation of Complete Proteomes: The Dictyostelium discoideum Case Study Amos Bairoch and Lydie Lane -- 1. Introduction -- 1.1. What is UniProtKB? -- 1.2. What is Dictyostelium discoideum? -- 1.3. The Dictyostelium discoideum Proteome at DictyBase -- 1.4. The Dictyostelium Annotation Project at UniProt -- 2. Annotation Pipeline of the Dictyostelium discoideumProteome in Uniprotkb -- 2.1. Creating a Complete Proteome Set Across Swiss-Prot and TrEMBL -- 2.2. UniProtKB/Swiss-Prot Annotation -- 2.2.1. Sequence annotation -- 2.2.2. Sequence feature annotation -- 2.2.3. Nomenclature annotation -- 2.2.4. Functional annotation -- 2.3. Why are DictyBase and UniProtkb Complementary? -- 3. Conclusion: Status and Perspective -- 3.1. Status of Dictyostelium Annotation in Swiss-Prot -- 3.2. Future of Dictyostelium Annotation in Swiss-Prot -- 3.3 How may the Annotation of Dictyostelium Help to Annotate other Eukaryotic Proteomes? -- Acknowledgments -- References -- Chapter 7 Analytical Bioinformatics for Proteomics Patricia M. Palagi and Frédérique Lisacek -- 1. Introduction -- 2. Proteome Imaging -- 2.1. 2-DE Gel Imaging -- 2.2. LC/MS Imaging for Label-Free Quantitation -- 3. Protein Identification and Characterization with MS Data -- 3.1. PMF -- 3.2. PFF -- 3.3. Identification Platforms - SwissPIT -- 4. Proteomics Knowledge Integration and Databases -- 4.1. Standards for High-Throughput Data -- 4.2. Integrative Proteomics Data -- 4.2.1. Proteomics servers.

4.2.2. Proteomics repositories -- 4.2.3. Proteomics integrated resources -- 5. Conclusion -- Acknowledgments -- References -- Chapter 8 Protein-Protein Interaction Networks: Assembly and Analysis Christian von Mering -- 1. Introduction -- 2. Experimental Protein Interaction Data -- 3. Networks That Include Indirect Associations -- 4. Clustering, Modules, and Motifs -- 5. Interpreting Network Topology -- 6. Online Resources -- References -- Chapter 9 Protein Structure Modeling and Docking at the Swiss Institute of Bioinformatics Torsten Schwede and Manuel C. Peitsch -- 1. Introduction -- 2. Protein Structure Prediction with SWISS-MODEL - Methods and Tools -- 2.1. SWISS-MODEL Pipeline -- 2.2. SWISS-MODEL Template Library -- 2.3. SWISS-MODEL Server and Workspace -- 2.4. SWISS-MODEL Repository -- 2.5. SWISS-MODEL and DeepView - Swiss-PdbViewer -- 3. Large-Scale Protein Structure Prediction and Structural Genomics -- 4. Protein Model Quality -- 4.1. Correctness and Accuracy -- 4.1.1. Model correctness -- 4.1.2. Model accuracy -- 4.2. Limitations of Comparative Protein Modeling -- 4.2.1. Template availability and structural diversity -- 4.2.2. Unstructured proteins -- 4.2.3. Membrane proteins -- 4.3. Model Quality Evaluation -- 5. Applications of Protein Models -- 5.1. Functional Analysis of Proteins -- 5.1.1. Studying the impact of mutations and SNPs on protein function -- 5.1.2. Planning site-directed mutagenesis experiments -- 5.2. Molecular Replacement -- 5.3. Protein Design -- 5.4. Docking -- 6. Protein Model Portal -- 7. Future Outlook -- References -- Chapter 10 Molecular Modeling of Proteins: From Simulations to Drug Design Applications Vincent Zoete, Michel Cuendet, Ute F. Röhrig, Aurélien Grosdidier and Olivier Michielin -- 1. Introduction -- 2. Molecular Force Fields -- 2.1. Statistical Mechanics Connection -- 2.2. The CHARMM Force Field.

3. Molecular Dynamics Simulations -- 3.1. Integration of the Equation of Motion -- 3.2. Thermodynamic Ensembles -- 4. Free Energy Calculations -- 4.1. Exact Statistical Mechanics Methods for Free Energy Differences -- 4.1.1. Free energy perturbation -- 4.1.2. Thermodynamic integration -- 4.2. Relative Free Energy Differences from Thermodynamic Cycles -- 4.3. Endpoint Methods -- 5. Examples of Applications -- 5.1. Protein Design -- 5.2. Drug Design -- References -- SECTION III PHYLOGENETICS AND EVOLUTIONARY BIOINFORMATICS -- Chapter 11 An Introduction to Phylogenetics and Its Molecular Aspects Gabriel Jîvasattha Bittar and Bernhard Pascal Sonderegger -- 1. Introduction -- 2. Homology and Homoplasy: Look-alikes are Not Necessarily Closely Related -- 2.1. Characters and Their States -- 2.2. Homology - A Phylogenetic Hypothesis -- 2.3. Ancestral or Derived - Qualifying the State of a Character -- 2.4. Homoplasy - Pitfall in Phylogenetics -- 3. Molecular Phylogenetics -- 3.1. Gene Duplication vs. Speciation, Paralogy vs. Orthology -- 3.2. Sequence Alignment - A Homology Hypothesis -- 3.3. Evolutionary Time -- 3.3.1. Evolutionary distance and the course of time -- 3.3.2. Time and time again: paleontology and molecular evolution -- 3.3.3. Micromutations and the molecular clock -- 4. Tree Reconstitution -- 4.1. The Tree Graph Model - Transmission of Phylogenetic Information -- 4.2. Numerical Taxonomic Phenetics (NTP) -- 4.2.1. The neighbor joining algorithm -- 4.2.2. A common NTP artefact -- 4.3. Cladistic Maximum Parsimony (CMP) Methods -- 4.3.1. Symplesiomorphy, synapomorphy, and autapomorphy -- 4.3.2. Cladistic maximum parsimony (CMP) and character compatibility (CC) methods -- 4.3.3. CMP common artefacts -- 4.4. Probabilistic Methods -- 4.5. Searching for an Optimal Tree in a Large, Populated Space -- 4.5.1. The number of possible phylogenetic trees.

4.5.2. The branch-and-bound algorithm.
Abstract:
Biological research and recent technological advances have resulted in an enormous increase in research data that require large storage capacities, powerful computing resources, and accurate data analysis algorithms. Bioinformatics is the field that provides these resources to life science researchers. The Swiss Institute of Bioinformatics (SIB), which has celebrated its 10th anniversary in 2008, is an institution of national importance, recognized worldwide for its state-of-the-art work. Organized as a federation of bioinformatics research groups from Swiss universities and research institutes, the SIB provides services to the life science community that are highly appreciated worldwide, and coordinates research and education in bioinformatics nationwide. The SIB plays a central role in life science research both in Switzerland and abroad by developing extensive and high-quality bioinformatics resources that are essential for all life scientists. Knowledge developed by SIB members in areas such as genomics, proteomics, and systems biology is directly transformed by academia and industry into innovative solutions to improve global health. Such an astounding concentration of talent in a given field is unusual and unique in Switzerland. This book provides an insight into some of the key areas of activity in bioinformatics in Switzerland. With contributions from SIB members, it covers both research work and major infrastructure efforts in genome and gene expression analysis, investigations on proteins and proteomes, evolutionary bioinformatics, and modeling of biological systems.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: