Cover image for Mathematical Chemistry and Chemoinformatics : Structure Generation, Elucidation and Quantitative Structure-Property Relationships.
Mathematical Chemistry and Chemoinformatics : Structure Generation, Elucidation and Quantitative Structure-Property Relationships.
Title:
Mathematical Chemistry and Chemoinformatics : Structure Generation, Elucidation and Quantitative Structure-Property Relationships.
Author:
Kerber, Adalbert.
ISBN:
9783110254075
Personal Author:
Physical Description:
1 online resource (520 pages)
Contents:
Preface -- Contents -- List of figures -- List of tables -- List of symbols -- Introduction and outline -- 1 Basics of graphs and molecular graphs -- 1.1 Graphs -- 1.1.1 Labeled graphs -- 1.1.2 Unlabeled graphs -- 1.2 Molecular graphs, constitutional isomers -- 1.2.1 Atom states in organic chemistry -- 1.2.2 Constitutional isomers -- 1.2.3 The existence of molecular graphs -- 1.3 Group actions on molecular graphs -- 1.3.1 Counting unlabeled structures -- 1.3.2 Counting by weight -- 1.3.3 Constructive methods -- 1.3.4 Generating samples -- 2 Advanced properties of molecular graphs -- 2.1 Substructures -- 2.1.1 Graph-theoretical elements -- 2.1.2 Subgraphs and their embeddings -- 2.2 Molecular substructures -- 2.2.1 Ambiguous molecular graphs -- 2.2.2 Substructure restrictions -- 2.3 Chemical reactions -- 2.4 Mesomerism -- 2.5 Existing chemical compounds -- 2.6 Molecular descriptors -- 2.6.1 Arithmetical descriptors -- 2.6.2 Topological descriptors -- 2.6.3 Geometrical descriptors -- 3 Chirality -- 3.1 Orientation and chirality -- 3.1.1 Barycentric placement of molecules in space -- 3.1.2 Symmetry operations, the point group -- 3.1.3 Chirality and handedness -- 3.2 Permutational isomers -- 3.2.1 Counting permutational isomers -- 3.2.2 Permutational isomers by content -- 3.2.3 Enumeration by symmetry -- 3.2.4 Constructive aspects -- 4 Stereoisomers -- 4.1 Basic stereochemistry -- 4.1.1 Symmetry, the orientational automorphism group -- 4.1.2 Partial orientation functions (POFs) -- 4.1.3 Generation of abstract POFs -- 4.1.4 Tests for chemical realizability -- 4.2 Radon partitions -- 4.3 Binary Grassmann-Plücker relations -- 4.4 Chemical conformation and cyclohexane -- 4.5 Perspectives -- 5 Molecular structure generation -- 5.1 Formula-based structure generation -- 5.1.1 Orderly generation of simple graphs -- 5.1.2 Introducing constraints.

5.1.3 Variations and refinements -- 5.1.4 From simple graphs to multigraphs -- 5.1.5 Applying the Homomorphism Principle -- 5.1.6 Orderly generation -- 5.1.7 Beyond orderly generation -- 5.2 Constrained generation and fuzzy formulas -- 5.2.1 Restrictions for a molecular formula -- 5.2.2 Structural restrictions -- 5.3 Reaction-based structure generation -- 5.3.1 Libraries of permutational isomers -- 5.3.2 Attaching substituents to a central molecule -- 5.3.3 Generation using the network principle -- 5.3.4 Generation of MS fragments -- 5.3.5 Construction using the network principle -- 5.3.6 Combinatorial libraries -- 5.3.7 Ugi's seven component reaction -- 5.4 Generic structural formulas -- 5.4.1 A simple generic structural formula -- 5.4.2 Patents in chemistry -- 5.5 Canonizing molecular graphs -- 5.5.1 Initial classification -- 5.5.2 Iterative refinement -- 5.5.3 Labeling by backtracking -- 5.5.4 Pruning the backtrack tree -- 5.5.5 Profiting from symmetry -- 5.6 Data structures for molecular graphs -- 6 Supervised statistical learning -- 6.1 Variables and predicting functions -- 6.1.1 Regression and classification -- 6.1.2 Validation of the predicting function -- 6.1.3 Preprocessing of data -- 6.1.4 Selection of variables -- 6.2 Models for predicting functions -- 6.2.1 Linear models -- 6.2.2 Neural networks -- 6.2.3 Support vector machines -- 6.2.4 Decision trees -- 6.2.5 Nearest neighbors -- 7 Quantitative structure-property relationships -- 7.1 Optimization of experiments in combinatorial chemistry -- 7.2 The use of molecular descriptors -- 7.2.1 Arithmetical, topological, and geometrical descriptors -- 7.2.2 Substructure counts -- 7.3 Mathematical composition of QSPRs -- 7.4 Case studies of QSPRs obtained by linear modeling -- 7.4.1 Linear modeling using topological indices -- 7.4.2 Linear modeling using substructure counts.

7.4.3 Linear modeling using TI and SC -- 7.4.4 Further descriptors and regression methods -- 7.4.5 Prediction -- 7.5 Case studies with separate learning and test sets -- 7.5.1 Preprocessing of structures -- 7.5.2 Choice of descriptors -- 7.5.3 Linear modeling by best subset selection -- 7.5.4 Linear modeling by stepwise subset selection -- 7.5.5 Linear modeling using principal component regression -- 7.6 A case study of QSARs with discrete values -- 7.6.1 Choice and redundancy of descriptors -- 7.6.2 Regression -- 7.6.3 Multi-classification -- 7.6.4 Binary classification -- 7.6.5 Prediction -- 7.7 Outlook: Unsupervised learning and diversity considerations -- 8 Molecular structure elucidation -- 8.1 Spectroscopic methods -- 8.2 Automated molecular structure elucidation -- 8.3 Basics of mass spectrometry -- 8.3.1 Mode of operation of an EI mass spectrometer -- 8.3.2 Problems in EI mass spectrometry -- 8.3.3 Mass spectra and isotope distributions -- 8.3.4 Database of elucidated mass spectra -- 8.4 Ranking functions for mass spectra -- 8.4.1 Ranking of molecular formulas -- 8.4.2 Ranking of structural formulas -- 8.5 Classification of mass spectra -- 8.5.1 MS descriptors -- 8.5.2 MS classifiers -- 8.5.3 Search for substructures amenable to MS classification -- 8.6 Automated structure elucidation via MS -- 8.6.1 Example methyl n-pentanoate -- 8.6.2 Example ethyl 3-hydroxyphenylacetate -- 8.7 High resolution MS -- 8.7.1 Exact isotope masses -- 8.7.2 Molecular formulas of identical exact mass -- 8.7.3 Mass differences between molecular formulas -- 8.7.4 Molecular formulas from exact molecular masses -- 8.8 High resolution MS/MS -- 8.8.1 Generating molecular formulas -- 8.8.2 Calculating MS match values -- 8.8.3 Calculating MS/MS match values -- 8.8.4 Verifying MS/MS match values experimentally -- 8.8.5 Scope, limitations and outlook for HR-MS.

9 Case studies of CASE -- 9.1 CASE with MOLGEN-MS -- 9.1.1 Example for a single spectrum -- 9.1.2 Multiple spectra -- 9.2 Calculated properties to improve CASE -- 9.2.1 Mass spectrum prediction -- 9.2.2 Retention properties -- 9.2.3 Partitioning properties -- 9.2.4 Steric energy -- 9.2.5 Filtering candidates by calculated properties -- 9.2.6 Consensus scoring -- 9.3 Examples of CASE at work -- 9.3.1 Blue rayon unknown 1 -- 9.3.2 Blue rayon unknown 2 -- 9.3.3 Diclofenac transformation product -- 9.4 CASE conclusions and outlook -- 9.4.1 GC-EI-MS -- 9.4.2 CASE with high accuracy data -- A Lists of molecular descriptors -- A.1 Arithmetical descriptors -- A.2 Topological descriptors -- A.3 Geometrical descriptors -- B Substructures for MS classifiers -- B.1 Alkyls -- B.2 Aromatics -- B.3 Bonds -- B.4 Elements -- B.5 Functional groups -- B.6 Rings -- C Molecular formulas by mass and ion type -- D Isomers by mass and molecular formula -- Bibliography -- List of abbreviations -- Index.
Abstract:
This work provides an introduction to mathematical modeling of molecules and its applications (structure generation, elucidation, evaluation; QSAR/QSPR etc.).It contains exercises and explanations of software packages in chemoinformatics that can be used directly via an online login code. It is aimed at users of structure generation and corresponding methods, but also for teaching and learning chemoinformatics and for software designers.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: