Cover image for Near-Capacity Variable-Length Coding : Regular and EXIT-Chart-Aided Irregular Designs.
Near-Capacity Variable-Length Coding : Regular and EXIT-Chart-Aided Irregular Designs.
Title:
Near-Capacity Variable-Length Coding : Regular and EXIT-Chart-Aided Irregular Designs.
Author:
Hanzo, Lajos L.
ISBN:
9780470666432
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (518 pages)
Series:
Wiley - IEEE ; v.13

Wiley - IEEE
Contents:
Contents -- About the Authors -- Other Wiley and IEEE Press Books on Related Topics -- Preface -- Acknowledgements -- Chapter 1 Introduction -- 1.1 Historical Overview -- 1.1.1 Source Coding and Decoding -- 1.1.1.1 Variable-Length Coding -- 1.1.1.2 Variable-Length Decoding -- 1.1.1.3 Classification of Source-Decoding Algorithms -- 1.1.2 Joint Source-Channel Decoding -- 1.1.3 Iterative Decoding and Convergence Analysis -- 1.2 Applications of Irregular Variable-Length Coding -- 1.2.1 Near-Capacity Operation -- 1.2.2 Joint Source and Channel Coding -- 1.2.3 Unequal Error Protection -- 1.3 Motivation and Methodology -- 1.4 Outline of the Book -- 1.5 Novel Contributions of the Book -- Chapter 2 Information Theory Basics -- 2.1 Issues in Information Theory -- 2.2 Additive White Gaussian Noise Channel -- 2.2.1 Background -- 2.2.2 Practical Gaussian Channels -- 2.2.3 Gaussian Noise -- 2.3 Information of a Source -- 2.4 Average Information of Discrete Memoryless Sources -- 2.4.1 Maximum Entropy of a Binary Source -- 2.4.2 Maximum Entropy of a q-ary Source -- 2.5 Source Coding for a Discrete Memoryless Source -- 2.5.1 Shannon-Fano Coding -- 2.5.2 Huffman Coding -- 2.6 Entropy of Discrete Sources Exhibiting Memory -- 2.6.1 Two-State Markov Model for Discrete Sources Exhibiting Memory -- 2.6.2 N-State Markov Model for Discrete Sources Exhibiting Memory -- 2.7 Examples -- 2.7.1 Two-StateMarkov Model Example -- 2.7.2 Four-StateMarkovModel for a Two-Bit Quantizer -- 2.8 Generating Model Sources -- 2.8.1 AutoregressiveModel -- 2.8.2 AR Model Properties -- 2.8.3 First-OrderMarkovModel -- 2.9 Run-Length Coding for Discrete Sources Exhibiting Memory -- 2.9.1 Run-Length Coding Principle -- 2.9.2 Run-Length Coding Compression Ratio -- 2.10 Information Transmission via Discrete Channels -- 2.10.1 Binary Symmetric Channel Example -- 2.10.2 Bayes' Rule.

2.10.3 Mutual Information -- 2.10.4 Mutual Information Example -- 2.10.5 Information Loss via Imperfect Channels -- 2.10.6 Error Entropy via Imperfect Channels -- 2.11 Capacity of Discrete Channels -- 2.12 Shannon's Channel Coding Theorem -- 2.13 Capacity of Continuous Channels -- 2.13.1 Practical Evaluation of the Shannon-Hartley Law -- 2.13.2 Shannon's Ideal Communications System for Gaussian Channels -- 2.14 Shannon's Message forWireless Channels -- 2.15 Summary and Conclusions -- Part I Regular Concatenated Codes and Their Design -- List of Symbols in Part I -- Chapter 3 Sources and Source Codes -- 3.1 Introduction -- 3.2 Source Models -- 3.2.1 Quantization -- 3.2.2 Memoryless Sources -- 3.2.3 Sources with Memory -- 3.3 Source Codes -- 3.3.1 Definitions and Notions -- 3.3.2 Some Properties of Variable-Length Codes -- 3.3.3 Huffman Code -- 3.3.4 Reversible Variable-Length Codes -- 3.3.4.1 Construction of RVLCs -- 3.3.4.2 An Example Construction of a RVLC -- 3.3.4.3 Experimental Results -- 3.3.5 Variable-Length Error-Correcting Code -- 3.3.5.1 Construction of VLEC Codes -- 3.3.5.2 An Example Construction of a VLEC Code -- 3.3.5.3 Experimental Results -- 3.4 Soft Decoding of Variable-Length Codes -- 3.4.1 Trellis Representation -- 3.4.1.1 Symbol-Level Trellis -- 3.4.1.2 Bit-Level Trellis -- 3.4.2 Trellis-Based VLC Decoding -- 3.4.2.1 Sequence Estimation Using the Viterbi Algorithm -- 3.4.2.2 Symbol-by-SymbolMAP Decoding -- 3.4.2.3 Concatenation of MAP Decoding and Sequence Estimation -- 3.4.3 Simulation Results -- 3.4.3.1 Performance of Symbol-Level Trellis-Based Decoding -- 3.4.3.2 Performance of Bit-Level Trellis-Based Decoding -- 3.4.3.3 Comparison of Symbol-Level Trellis and Bit-Level Trellis-Based Decoding -- 3.5 Summary and Conclusions -- Chapter 4 Iterative Source-Channel Decoding -- 4.1 Concatenated Coding and the Turbo Principle.

4.1.1 Classification of Concatenated Schemes -- 4.1.1.1 Parallel Concatenated Schemes -- 4.1.1.2 Serially Concatenated Schemes -- 4.1.1.3 Hybrid Concatenated Schemes -- 4.1.2 Iterative Decoder Activation Order -- 4.2 SISO APP Decoders and their EXIT Characteristics -- 4.2.1 A Soft-Input Soft-Output APP Module -- 4.2.1.1 The Encoder -- 4.2.1.2 The Decoder -- 4.2.2 EXIT Chart -- 4.2.2.1 Mutual Information -- 4.2.2.2 Properties of the J(·) Function -- 4.2.2.3 Evaluation of the EXIT Characteristics of a SISO APP Module -- 4.2.2.4 Simplified Computation of Mutual Information -- 4.2.2.5 Examples -- 4.3 Iterative Source-Channel Decoding Over AWGN Channels -- 4.3.1 System Model -- 4.3.2 EXIT Characteristics of VLCs -- 4.3.3 Simulation Results for AWGN Channels -- 4.4 Iterative Channel Equalization, Channel Decoding and Source Decoding -- 4.4.1 Channel Model -- 4.4.2 Iterative Channel Equalization and Source Decoding -- 4.4.2.1 System Model -- 4.4.2.2 EXIT Characteristics of Channel Equalizer -- 4.4.2.3 Simulation Results -- 4.4.2.4 Performance Analysis Using EXIT Charts -- 4.4.3 Precoding for Dispersive Channels -- 4.4.3.1 EXIT Characteristics of Precoded Channel Equalizers -- 4.4.3.2 Performance Analysis -- 4.4.4 Joint Turbo Equalization and Source Decoding -- 4.4.4.1 System Model -- 4.4.4.2 Simulation Results -- 4.5 Summary and Conclusions -- Chapter 5 Three-Stage Serially Concatenated Turbo Equalization -- 5.1 Introduction -- 5.2 Soft-In Soft-Out MMSE Equalization -- 5.3 Turbo Equalization Using MAP/MMSE Equalizers -- 5.3.1 System Model -- 5.3.2 EXIT Chart Analysis -- 5.3.3 Simulation Results -- 5.4 Three-Stage Serially Concatenated Coding and MMSE Equalization -- 5.4.1 System Model -- 5.4.2 EXIT Chart Analysis -- 5.4.2.1 Determination of the Convergence Threshold -- 5.4.2.2 Optimization of the Outer Code -- 5.4.2.3 Optimization of the Activation Order.

5.4.3 BER Performance -- 5.4.4 Decoding Trajectories -- 5.4.5 Effects of Interleaver Block Length -- 5.5 Approaching the Channel Capacity Using EXIT-Chart Matching and IRCCs -- 5.5.1 Area Properties of EXIT Charts -- 5.5.2 Analysis of the Three-Stage System -- 5.5.3 Design of Irregular Convolutional Codes -- 5.5.4 Simulation Results -- 5.6 Rate Optimization of Serially Concatenated Codes -- 5.7 Joint Source-Channel Turbo Equalization Revisited -- 5.8 Summary and Conclusions -- Part II Irregular Concatenated VLCs and Their Design -- List of Symbols in Part II -- Chapter 6 Irregular Variable-Length Codes for Joint Source and Channel Coding -- 6.1 Introduction -- 6.2 Overview of Proposed Scheme -- 6.2.1 Compression -- 6.2.2 VDVQ/RVLC Decomposition -- 6.2.3 Serial Concatenation and Iterative Decoding -- 6.3 Transmission Frame Structure -- 6.3.1 Frame Difference Decomposition -- 6.3.2 VDVQ/RVLC Codebook -- 6.3.3 VDVQ/RVLC-Induced Code Constraints -- 6.3.4 VDVQ/RVLC Trellis Structure -- 6.4 VDVQ/RVLC Encoding -- 6.5 APP SISO VDVQ/RVLC Decoding -- 6.6 Simulation Results -- 6.7 Summary and Conclusions -- Chapter 7 Irregular Variable-Length Codes for EXIT-Chart Matching -- 7.1 Introduction -- 7.2 Overview of Proposed Schemes -- 7.2.1 Joint Source and Channel Coding -- 7.2.2 Iterative Decoding -- 7.3 Parameter Design for the Proposed Schemes -- 7.3.1 Scheme Hypothesis and Parameters -- 7.3.2 EXIT-Chart Analysis and Optimization -- 7.4 Simulation Results -- 7.4.1 IrCC-Based Benchmark -- 7.4.2 Iterative Decoding Convergence Performance -- 7.4.3 Interleaver Length and Latency -- 7.4.4 Performance During Iterative Decoding -- 7.4.5 Complexity Analysis -- 7.4.6 Unequal Error-Protection Performance -- 7.5 Summary and Conclusions -- Chapter 8 Genetic Algorithm-Aided Design of Irregular Variable-Length Coding Components -- 8.1 Introduction.

8.2 The Free Distance Metric -- 8.3 Overview of the Proposed Genetic Algorithm -- 8.4 Overview of Proposed Scheme -- 8.4.1 Joint Source and Channel Coding -- 8.4.2 Iterative Decoding -- 8.5 Parameter Design for the Proposed Scheme -- 8.5.1 Design of IrVLC Component VLEC Codebook Suites -- 8.5.2 Characterization of Component VLEC Codebooks -- 8.5.3 Suitability of IrVLC Component Codebook Suites -- 8.5.4 Parameterizations of the Proposed Scheme -- 8.5.5 Interleaver Length -- 8.6 Simulation Results -- 8.7 Summary and Conclusions -- Chapter 9 Joint EXIT-Chart Matching of Irregular Variable-Length Coding and Irregular Unity-Rate Coding -- 9.1 Introduction -- 9.2 Modifications of the EXIT-Chart Matching Algorithm -- 9.3 Joint EXIT-Chart Matching -- 9.4 Overview of the Transmission Scheme Considered -- 9.4.1 Joint Source and Channel Coding -- 9.4.2 Iterative Decoding -- 9.5 System Parameter Design -- 9.5.1 Component VLEC Codebooks -- 9.5.2 Component URC Codes -- 9.5.3 EXIT-Chart Matching -- 9.5.4 Parameterizations of the Proposed Scheme -- 9.6 Simulation Results -- 9.7 Summary and Conclusions -- Part III Applications of VLCs -- Chapter 10 Iteratively Decoded Variable-Length Space-Time Coded Modulation: Code Construction and Convergence Analysis -- 10.1 Introduction -- 10.2 Space-Time Coding Overview -- 10.3 Two-Dimensional VLC Design -- 10.4 VL-STCM Scheme -- 10.5 VL-STCM-ID Scheme -- 10.6 Convergence Analysis -- 10.7 Simulation Results -- 10.8 Non-Binary VL-STCM -- 10.8.1 Code Design -- 10.8.2 Benchmarker -- 10.8.3 Decoding -- 10.8.4 Simulation results -- 10.9 Conclusions -- Chapter 11 Iterative Detection of Three-Stage Concatenated IrVLC FFH-MFSK -- 11.1 Introduction -- 11.2 System Overview -- 11.2.1 Joint Source and Channel Coding -- 11.2.2 FFH-MFSKModulation -- 11.2.3 The Channel -- 11.2.4 FFH-MFSK Demodulation -- 11.3 Iterative Decoding.

11.3.1 Derivation of Soft Information.
Abstract:
About the Authors Other Wiley and IEEE Press Books on Related Topics Acknowledgments Preface Chapter 1 Introduction 1.1 Historical Overview 1.2 Applications of Irregular Variable Length Coding 1.3 Motivation and Methodology 1.4 Outline of the Book 1.5 Novel Contributions of the Book Chapter 2 Information Theory Basics 2.1 Issues in Information Theory 2.2 AdditiveWhite Gaussian Noise Channel 2.3 Information of a Source 2.4 Average Information of Discrete Memoryless Sources 2.5 Source Coding for a Discrete Memoryless Source 2.6 Entropy of Discrete Sources Exhibiting Memory 2.7 Examples 2.8 Generating Model Sources 2.9 Run-Length Coding for Discrete Sources Exhibiting Memory 2.10 Information Transmission via Discrete Channels 2.11 Capacity of Discrete Channels 2.12 Shannon's Channel Coding Theorem 2.13 Capacity of Continuous Channels 2.14 Shannon's Message for Wireless Channels 2.15 Summary and Conclusions I Regular Concatenated Codes and Their Design List of Symbols in Part I Chapter 3 Sources and Source Codes 3.1 Introduction 3.2 Source Models 3.3 Source Codes 3.4 Soft-Decoding of Variable Length Codes 3.5 Summary and Conclusions Chapter 4 Iterative Source/Channel Decoding 4.1 Concatenated Coding and the Turbo Principle 4.2 SISO APP Decoders and Their EXIT Characteristics 4.3 Iterative Source/Channel Decoding Over AWGN Channels 4.4 Iterative Channel Equalisation, Channel Decoding and Source Decoding 4.5 Summary and Conclusions Chapter 5 Three-Stage Serially Concatenated Turbo Equalisation 5.1 Introduction 5.2 Soft-in/Soft-outMMSE Equalisation 5.3 Turbo Equalisation Using MAP/MMSE Equalisers 5.4 Three-stage serially concatenated coding and MMSE equalisation 5.5 Approaching the Channel Capacity Using EXIT-Chart Matching and IRCCs . 5.6 Rate-Optimisation of

Serially Concatenated Codes 5.7 Joint Source-Channel Turbo Equalisation Revisited 5.8 Summary and Conclusions II Irregular Concatenated VLCs and Their Design List of Symbols in Part II Chapter 6 Irregular Variable Length Codes for Joint Source and Channel Coding 6.1 Introduction 6.2 Overview of proposed scheme 6.3 Transmission frame structure 6.4 VDVQ/RVLC encoding 6.5 APP SISO VDVQ/RVLC decoding 6.6 Simulation results 6.7 Summary and Conclusions Chapter 7 Irregular Variable Length Codes for EXIT Chart Matching 7.1 Introduction 7.2 Overview of proposed schemes 7.3 Parameter design for the proposed schemes 7.4 Simulation results 7.5 Summary and Conclusions Chapter 8 Genetic Algorithm Aided Design of Irregular Variable Length Coding Components 8.1 Introduction 8.2 The free distance metric 8.3 Overview of the proposed genetic algorithm 8.4 Overview of proposed scheme 8.5 Parameter design for the proposed scheme 8.6 Simulation results 8.7 Summary and Conclusions Chapter 9 Joint EXIT Chart Matching of Irregular Variable Length Coding and Irregular Unity Rate Coding 9.1 Introduction 9.2 Modifications of the EXIT chart matching algorithm 9.3 Joint EXIT chart matching 9.4 Overview of the transmission scheme considered 9.5 System parameter design 9.6 Simulation results 9.7 Summary and Conclusions III Applications of VLCs Chapter 10 Iteratively Decoded VLC Space-Time Coded Modulation 10.1 Introduction 10.2 Space Time Coding Overview 10.3 Two-Dimensional VLC Design 10.4 VL-STCM Scheme 10.5 VL-STCM-ID Scheme 10.6 Convergence Analysis 10.7 Simulation results 10.8 Conclusions Chapter 11 Iterative Detection of Three-Stage Concatenated IrVLC FFH-MFSK 11.1 Introduction 11.2 System Overview 11.3 Iterative decoding 11.4 System parameter design and Results 11.5

Conclusion Chapter 12 Conclusions and Future Research 12.1 Chapter 1: Introduction 12.2 Chapter 2: Information Theory Basics 12.3 Chapter 3: Sources and Source Codes 12.4 Chapter 4: Iterative Source/Channel Decoding 12.5 Chapter 5: Three-Stage Serially Concatenated Turbo Equalisation 12.6 Chapter 6: Joint source and channel coding 12.7 Chapters 7 - 9: EXIT chart matching 12.8 Chapter 8: GA-aided Design of Irregular VLC Components 12.9 Chapter 9: Joint EXIT Chart Matching of IRVLCs and IRURCs 12.10Chapter 10: Iteratively Decoded VLC Space-Time Coded Modulation 12.11Chapter 11: Iterative Detection of Three-Stage Concatenated IrVLC FFHMFSK 12.12Future work 12.13Closing remarks Appendix A VLC Construction Algorithms A.1 RVLC Construction Algorithm A A.2 RVLC Construction Algorithm B A.3 Greedy Algorithm (GA) and Majority Voting Algorithm (MVA) Appendix B SISO VLC Decoder Appendix C APP Channel Equalisation Bibliography Glossary Subject Index Author Index.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: