Cover image for Quantum Gases : Finite Temperature and Non-Equilibrium Dynamics.
Quantum Gases : Finite Temperature and Non-Equilibrium Dynamics.
Title:
Quantum Gases : Finite Temperature and Non-Equilibrium Dynamics.
Author:
Proukakis, Nikolaos.
ISBN:
9781848168121
Personal Author:
Physical Description:
1 online resource (579 pages)
Series:
Cold Atoms ; v.1

Cold Atoms
Contents:
Contents -- Foreword -- Preface -- Participants of FINESS 2009 (Durham) -- Common Symbols/Expressions and their Meanings -- Part I. Introductory Material -- Editorial Notes -- I.A. Quantum Gases: The Background -- 1. Quantum Gases: Setting the Scene N.P. Proukakis & K. Burnett -- 1.1. Introduction: Background to Quantum Fluids and Gases -- 1.2. History of Non-Equilibrium and Finite-Temperature Pure BEC Experiments -- 1.2.1. The Search for Idealised Systems: Spin-Polarised Hydrogen -- 1.2.2. The Twist to an Unlikely Candidate: The Scene Opens up for Alkali Atoms -- 1.2.3. Rival Candidates Gaining Ground? -- 1.3. Modelling Quantum Degenerate Gases -- 1.3.1. The Success of Phenomenology -- 1.3.2. Ab Initio Modelling -- 1.3.2.1. The Gross-Pitaevskii Equation -- 1.3.2.2. Generalised Kinetic Theories -- 1.3.3. Classical-Field and Stochastic Approaches -- 1.3.4. Modelling Related Systems -- 1.4. Unified Features of Quantum Gases -- 1.4.1. Non-Equilibrium BECs and the Thermal Phase Transition -- 1.4.2. Thermal and Quantum Fluctuations -- 1.4.3. Quantum Phase Transitions and Disorder -- 1.4.4. The Superfluid Fraction, its Relation to the Condensate and the Issue of Fragmentation -- 1.4.5. Strongly Correlated Physics -- 1.4.6. Ultracold Fermions -- 1.4.7. Potential Applications -- 1.4.8. Other Systems Exhibiting Condensation -- Acknowledgements -- I.B. Quantum Gases: Experimental Considerations -- 2. Ultracold Quantum Gases: Experiments with Many-Body Systems in Controlled Environments P. Kruger -- 2.1. Introduction -- 2.2. Condensate Formation and Growth -- 2.3. Excitations of Bose-Einstein Condensates -- 2.4. Strongly Correlated and Phase-Fluctuating Systems -- 2.4.1. Feshbach Resonances -- 2.4.2. Optical Lattices -- 2.4.3. Low-Dimensional Systems -- Acknowledgements -- 3. Ultracold Quantum Gases: Key Experimental Techniques S.A. Hopkins & S.L. Cornish.

3.1. Introduction -- 3.2. Basic Experimental Techniques -- 3.2.1. Overview -- 3.2.2. Laser Cooling and Trapping of Atoms -- 3.2.3. Magnetic Traps -- 3.2.4. Dipole Traps -- 3.2.5. Evaporative (and Sympathetic) Cooling -- 3.2.6. Feshbach Resonances -- 3.2.7. Manipulation and Visualisation -- 3.2.8. Cold Molecules -- 3.3. High-Level Techniques -- 3.3.1. Interferometry -- 3.3.2. Optical Lattices -- 3.3.3. Rotation, Vortices, and Phase Imprinting -- 3.3.4. Microtraps (or 'Atom Chips') -- 3.3.5. Matter-Wave Lasers (or 'Atom Lasers') -- 3.4. New Tools and Topical Areas -- 3.5. Summary and Outlook -- Acknowledgements -- I.C. Quantum Gases: Background Key Theoretical Notions -- 4. Introduction to Theoretical Modelling M.J. Davis, S.A. Gardiner, T.M. Hanna, N. Nygaard, N.P. Proukakis & M.H. Szymanska -- 4.1. Introduction -- 4.2. Second Quantisation -- 4.3. Effective Interactions -- 4.4. Broken Symmetry Versus Number Conservation -- 4.5. Fluctuations and Degeneracy in Low Dimensions -- 4.6. Periodic Potentials ('Optical Lattices') -- 4.7. Fermionic Issues -- 4.8. Feshbach Resonances -- 4.9. Summary -- Acknowledgements -- Part II. Ultracold Bosonic Gases: Theoretical Modelling -- Editorial Notes -- II.A. Kinetic and Many-Body Approaches -- Editorial Notes -- 5. A Dynamical Self-Consistent Finite-Temperature Kinetic Theory: The ZNG Scheme A.J. Allen, C.F. Barenghi, N.P. Proukakis & E. Zaremba -- 5.1. Introduction -- 5.2. Methodology -- 5.2.1. Mean-Field Coupling: First-Order Effects -- 5.2.2. Particle-Exchanging Collisions: Second-Order Effects -- 5.2.3. Numerical Implementation -- 5.2.4. ZNG Condensate Hydrodynamics -- 5.3. Validity Issues -- 5.3.1. Validity Domain -- 5.3.2. Relevance to Other Theories -- 5.4. Applications -- 5.4.1. Damping of Condensate Scissors Mode -- 5.4.2. Decaying Vortex Dynamics -- 5.5. Relevance to Other Systems -- Acknowledgements.

6. Extended Mean-Field Theory: Reversible and Irreversible Quantum Evolution of Trapped Gases R. Walser -- 6.1. Introduction -- 6.2. Methodology -- 6.2.1. Coarse-Grained Markovian Density Operator -- 6.2.2. Derivation of an Integral Equation -- 6.2.3. Quantum Kinetic Equations -- 6.2.4. Fields and Energies -- 6.2.5. The Set of Relevant Operators -- 6.2.6. Relevant Kinetic Equations for Bose Gases -- 6.3. Validity Issues -- 6.4. Applications -- 6.4.1. Reversible Isentropic Evolution -- 6.4.2. Irreversible Collisional Thermalisation -- 6.5. Relevance to Other Systems -- Acknowledgements -- 7. Cumulant Dynamics of Strongly Interacting Ultracold Gases T.M. Hanna & J. Mur-Petit -- 7.1. Introduction -- 7.2. Methodology -- 7.2.1. Mean-Field Evolution -- 7.2.2. One-Body Density Matrix Evolution -- 7.2.3. Form of Two-Body Potential -- 7.3. Validity Issues -- 7.4. Applications -- 7.4.1. Dynamics of Feshbach Molecule Production -- 7.4.2. Relevance to Other Systems -- Acknowledgements -- 8. Number-Conserving Approaches for Atomic Bose-Einstein Condensates: An Overview S.A. Gardiner & T.P. Billam -- 8.1. Introduction -- 8.2. Methodology: A Number-Conserving Perturbative Approach -- 8.2.1. Number-Conserving versus Symmetry-Breaking Approaches -- 8.2.2. Key Concept: A Number-Conserving Fluctuation Operator -- 8.2.3. Number-Conserving Bogoliubov Treatment -- 8.2.4. Second-Order Self-Consistent Treatment -- 8.2.5. Numerical Implementation -- 8.3. Validity Issues -- 8.4. Applications -- Acknowledgements -- 9. Multiconfigurational Time-Dependent Hartree Methods for Bosonic Systems: Theory and Applications O.E. Alon, A.I. Streltsov, K. Sakmann & L.S. Cederbaum -- 9.1. Introduction -- 9.2. Methodology: Multiconfigurational Time-Dependent Hartree Methods for Bosonic Systems -- 9.2.1. Single-Component Bosons -- 9.2.2. Extension to Bose-Bose Mixtures.

9.2.3. Extension to Resonantly Coupled Bosonic Atoms and Molecules -- 9.3. Discussion of Validity -- 9.4. Applications -- 9.4.1. Exact Quantum Dynamics of a One-Dimensional Bosonic Josephson Junction -- 9.4.2. Swift Loss of Coherence of One-Dimensional Bright Soliton Trains -- 9.5. Relevance to Other Systems -- Acknowledgments -- II.B. Classical-Field, Stochastic and Field-Theoretic Approaches -- Editorial Notes -- 10. C-Field Methods for Non-Equilibrium Bose Gases M.J. Davis, T.M. Wright, P.B. Blakie, A.S. Bradley, R.J. Ballagh & C.W. Gardiner -- 10.1. Introduction -- 10.2. Methodology -- 10.2.1. Outline of Derivation -- 10.2.2. Numerical Implementation of the SPGPE -- 10.2.3. Projected Gross-Pitaevskii Equation (PGPE) -- 10.2.4. Truncated Wigner Projected Gross-Pitaevskii Equation (TWPGPE) -- 10.3. Validity Issues -- 10.3.1. Relevance to Other Theories -- 10.4. Application -- 10.5. Relevance to Other Systems -- Acknowledgements -- 11. The Stochastic Gross-Pitaevskii Methodology S.P. Cockburn & N.P. Proukakis -- 11.1. Introduction -- 11.2. Methodology -- 11.2.1. Fokker-Planck Equation for an Ultracold Bose Gas -- 11.2.2. Formulation as a Langevin Equation -- 11.2.3. Stochastic Hydrodynamics -- 11.2.4. Simple Numerical Implementation -- 11.2.5. Interpretation: Single Runs and Extracting Coherence Properties -- 11.2.5.1. Single Versus Averaged Runs -- 11.2.5.2. A Posteriori Condensate/Quasi-Condensate Extraction -- 11.2.5.3. Comparison with the Modified Popov Method -- 11.3. Validity Issues -- 11.3.1. Validity Domain -- 11.3.2. Relevance to Other Theories -- 11.4. Applications -- 11.4.1. Comparison with Quasi-One-Dimensional Bose Gas Experiments -- 11.4.2. Dark-Soliton Dynamics in a Quasi-Condensate -- 11.5. Relevance to Other Systems -- Acknowledgements -- 12. A Classical-Field Approach for Bose Gases M. Brewczyk, M. Gajda & K. Rzazewski.

12.1. Introduction -- 12.2. Methodology: The Classical-Field Approach -- 12.2.1. Choice of Cutoff -- 12.2.2. Generating Equilibrium States on Demand -- 12.2.2.1. Relation to Actual Parameters -- 12.2.2.2. Numerical Details -- 12.3. Applications -- 12.3.1. Quadrupole Oscillations of Condensate and Thermal Cloud -- 12.3.2. Decay of Vortices -- Acknowledgements -- 13. The Truncated Wigner Method for Bose Gases J. Ruostekoski & A.D. Martin -- 13.1. Introduction -- 13.2. Methodology -- 13.2.1. Initial-State Generation in the Truncated Wigner Approximation -- 13.2.1.1. Uniform System -- 13.2.1.2. Trapped System -- 13.2.1.3. Quasi-Condensate Description -- 13.2.1.4. Relaxation -- 13.2.2. Wigner Representation and Symmetric Ordering -- 13.2.3. Numerical Implementation -- 13.3. Validity Issues -- 13.4. Applications -- 13.4.1. Dark Solitons -- 13.4.2. Atom-Number Squeezing -- Acknowledgements -- 14. Number-Conserving Stochastic Approaches for Equilibrium and Time-Dependent Bose Gases A. Sinatra, Y. Castin, I. Carusotto, C. Lobo & E. Witkowska -- 14.1. Introduction -- 14.2. Methodology -- 14.2.1. Number-Conserving Wigner Method -- 14.2.1.1. Sampling of W at Thermal Equilibrium -- 14.2.1.2. Time Evolution -- 14.2.2. Giving up Quantum Fluctuations: A Classical Field Model -- 14.2.2.1. Generation of the Fields in the Canonical Ensemble -- 14.2.2.2. Time Evolution -- 14.2.3. Exact and Semiclassical Methods -- 14.3. Validity Issues -- 14.3.1. Relevance to Other Non-U(1)-Symmetry Preserving Theories -- 14.4. Applications -- 14.4.1. Number-Conserving Wigner Method -- 14.4.2. Classical-Field Method -- 14.4.3. Exact and Semiclassical Methods -- Acknowledgements -- 15. Quantum Dynamics on Extended Phase Space: The Positive-P Representation P.D. Drummond -- 15.1. Introduction -- 15.2. Methodology -- 15.2.1. Operator Identities.

15.2.2. The Fokker-Planck and Stochastic Equations.
Abstract:
The 1995 observation of Bose-Einstein condensation in dilute atomic vapours spawned the field of ultracold, degenerate quantum gases. Unprecedented developments in experimental design and precision control have led to quantum gases becoming the preferred playground for designer quantum many-body systems.This self-contained volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics. Thematically organised chapters on different methodologies, contributed by key researchers using a unified notation, provide the first integrated view of the relative merits of individual approaches, aided by pertinent introductory chapters and the guidance of editorial notes.Both graduate students and established researchers wishing to understand the state of the art will greatly benefit from this comprehensive and up-to-date review of non-equilibrium and finite temperature techniques in the exciting and expanding field of quantum gases and liquids.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: