Cover image for Extractive Metallurgy of Copper.
Extractive Metallurgy of Copper.
Title:
Extractive Metallurgy of Copper.
Author:
Schlesinger, Mark E.
ISBN:
9780080967905
Personal Author:
Edition:
5th ed.
Physical Description:
1 online resource (481 pages)
Contents:
Front Cover -- Extractive Metallurgy of Copper -- Copyright -- Contents -- Preface to the Fifth Edition -- Preface to the Fourth Edition -- Preface to the Third Edition -- Preface to the Second Edition -- Preface to the First Edition -- Chapter 1 Overview -- 1.1. Introduction -- 1.2. Extracting Copper from Copper-Iron-Sulfide Ores -- 1.3. Hydrometallurgical Extraction of Copper -- 1.4. Melting and Casting Cathode Copper -- 1.5. Recycle of Copper and Copper-alloy Scrap (Chapters 18 and 19) -- 1.6. Summary -- Reference -- Suggested Reading -- Chapter 2 Production and Use -- 2.1. Copper Minerals and Cut-off Grades -- 2.2. Location of Extraction Plants -- 2.3. Price of Copper -- 2.4. Summary -- References -- Chapter 3 Production of High Copper Concentrates - Introduction and Comminution -- 3.1. Concentration Flowsheet -- 3.2. The Comminution Process -- 3.3. Blasting -- 3.4. Crushing -- 3.5. Grinding -- 3.6. Recent Developments in Comminution -- 3.7. Summary -- References -- Suggested reading -- Chapter 4 Production of Cu Concentrate from Finely Ground Cu Ore -- 4.1. Froth Flotation -- 4.2. Flotation Chemicals (Nagaraj & Ravishankar, 2007 -- Woodcock, Sparrow, Bruckard, Johnson, & Dunne, 2007) -- 4.3. Specific Flotation Procedures for Cu Ores -- 4.4. Flotation Cells -- 4.5. Sensors, Operation, and Control -- 4.6. The Flotation Products -- 4.7. Other Flotation Separations -- 4.8. Summary -- References -- Suggested Reading -- Chapter 5 Matte Smelting Fundame ntals -- 5.1. Why Smelting? -- 5.2. Matte and Slag -- 5.3. Reactions During Matte Smelting -- 5.4. The Smelting Process: General Considerations -- 5.5. Smelting Products: Matte, Slag and Offgas -- 5.6. Summary -- References -- Suggested Reading -- Chapter 6 Flash Smelting -- 6.1. Outotec Flash Furnace -- 6.2. Peripheral Equipment -- 6.3. Flash Furnace Operation -- 6.4. Control (Fig. 6.3).

6.5. Impurity Behavior -- 6.6. Outotec Flash Smelting Recent Developments and Future Trends -- 6.7. Inco Flash Smelting -- 6.8. Inco Flash Furnace Summary -- 6.9. Inco vs. Outotec Flash Smelting -- 6.10. Summary -- References -- Suggested Reading -- Chapter 7 Submerged Tuyere Smelting: Noranda, Teniente, and Vanyukov -- 7.1. Noranda Process (Prevost, Letourneau, Perez, Lind, & Lavoie, 2007 -- Zapata, 2007) -- 7.2. Reaction Mechanisms -- 7.3. Operation and Control -- 7.4. Production Rate Enhancement -- 7.5. Teniente Smelting -- 7.6. Process Description -- 7.7. Operation (Moyano et al., 2010) -- 7.8. Control (Morrow & Gajaredo, 2009 -- Moyano et al., 2010) -- 7.9. Impurity Distribution -- 7.10. Discussion -- 7.11. Vanyukov Submerged-Tuyere Smelting -- 7.12. Summary -- References -- Suggested Reading -- Chapter 8 Converting of Copper Matte -- 8.1. Chemistry -- 8.2. Industrial Peirce-Smith Converting Operations -- 8.3. Oxygen Enrichment of Peirce-Smith Converter Blast -- 8.4. Maximizing Converter Productivity -- 8.5. Recent Improvements in Peirce-Smith Converting -- 8.6. Alternatives to Peirce-Smith Converting -- 8.7. Summary -- References -- Suggested Reading -- Chapter 9 Bath Matte Smelting: Ausmelt/Isasmelt and Mitsubishi -- 9.1. Basic Operations -- 9.2. Feed Materials -- 9.3. The TSL Furnace and Lances -- 9.4. Smelting Mechanisms -- 9.5. Startup and Shutdown -- 9.6. Current Installations -- 9.7. Copper Converting Using TSL Technology -- 9.8. The Mitsubishi Process -- 9.9. The Mitsubishi Process in the 2000s -- 9.10. Summary -- References -- Suggested Reading -- Chapter 10 Direct-To-Copper Flash Smelting -- 10.1. Advantages and Disadvantages -- 10.2. The Ideal Direct-to-Copper Process -- 10.3. Industrial Single Furnace Direct -to-Copper Smelting -- 10.4. Chemistry -- 10.5. Effect of Slag Composition on % Cu-in-Slag -- 10.6. Industrial Details.

10.7. Control -- 10.8. Electric Furnace Cu-from-Slag Recovery -- 10.9. Cu-in-Slag Limitation of Direct-to-Copper Smelting -- 10.10. Direct-to-Copper Impurities -- 10.11. Summary -- References -- Suggested Reading -- Chapter 11 Copper Loss in Slag -- 11.1. Copper in Slags -- 11.2. Decreasing Copper in Slag I: Minimizing Slag Generation -- 11.3. Decreasing Copper in Slag II: Minimizing Copper Concentration in Slag -- 11.4. Decreasing Copper in Slag III: Pyrometallurgical Slag Settling/Reduction -- 11.5. Decreasing Copper in Slag IV: Slag Minerals Processing -- 11.6. Summary -- References -- Suggested Reading -- Chapter 12 Capture and Fixation of Sulfur -- 12.1. Offgases From Smelting and Converting Processes -- 12.2. Sulfuric Acid Manufacture -- 12.3. Smelter Offgas Treatment -- 12.4. Gas Drying -- 12.5. Acid Plant Chemical Reactions -- 12.6. Industrial Sulfuric Acid Manufacture (Tables 12.4, 12.5, and 12.6) -- 12.7. Alternative Sulfuric Acid Manufacturing Methods -- 12.8. Recent and Future Developments in Sulfuric Acid Manufacture -- 12.9. Alternative Sulfur Products -- 12.10. Future Improvements in Sulfur Capture -- 12.11. Summary -- References -- Suggested Reading -- Chapter 13 Fire Refining (S and O Removal) and Anode Casting -- 13.1. Industrial Methods of Fire Refining -- 13.2. Chemistry of Fire Refining -- 13.3. Choice of Hydrocarbon for Deoxidation -- 13.4. Casting Anodes -- 13.5. ontinuous Anode Casting -- 13.6. New Anodes from Rejects and Anode Scrap -- 13.7. Removal of Impurities During Fire Refining -- 13.8. Summary -- References -- Suggested Reading -- Chapter 14 Electrolytic Refining -- 14.1. The Electrorefining Process -- 14.2. Chemistry of Electrorefining and Behavior of Anode Impurities -- 14.3. Equipment -- 14.4. Typical Refining Cycle -- 14.5. Electrolyte -- 14.6. Maximizing Copper Cathode Purity -- 14.7. Minimizing Energy Consumption.

14.8. Industrial Electrorefining -- 14.9. Recent Developments and Emerging Trends in Copper Electrorefining -- 14.10. Summary -- References -- Suggested Reading -- Chapter 15 Hydrometallurgical Copper Extraction: Introduction and Leaching -- 15.1. Copper Recovery by Hydrometallurgical Flowsheets -- 15.2. Chemistry of the Leaching of Copper Minerals -- 15.3. Leaching Methods -- 15.4. Heap and Dump Leaching -- 15.5. Vat Leaching -- 15.6. Agitation Leaching -- 15.7. Pressure Oxidation Leaching -- 15.8. Future Developments -- 15.9. Summary -- References -- Suggested Reading -- Chapter 16 Solvent Extraction -- 16.1. The Solvent-extraction Process -- 16.2. Chemistry of Copper Solvent Extraction -- 16.3. Composition of the Organic Phase -- 16.4. Minimizing Impurity Transfer and Maximizing Electrolyte Purity -- 16.5. Equipment -- 16.6. Circuit Configurations -- 16.7. Quantitative Design of a Series Circuit -- 16.8. Quantitative Comparison of Series and Series-parallel Circuits -- 16.9. Operational Considerations -- 16.10. Industrial Solvent-Extraction Plants -- 16.11. Summary -- References -- Suggested Reading -- Chapter 17 Electrowinning -- 17.1. The Electrowinning Process -- 17.2. Chemistry of Copper Electrowinning -- 17.3. Electrical Requirements -- 17.4. Equipment and Operational Practice -- 17.5. Maximizing Copper Purity -- 17.6. Maximizing Energy Efficiency -- 17.7. Modern Industrial Electrowinning Plants -- 17.8. Electrowinning from Agitated Leach Solutions -- 17.9. Current and Future Developments -- 17.10. Summary -- References -- Suggested Reading -- Chapter 18 Collection and Processing of Recycled Copper -- 18.1. The Materials Cycle -- 18.2. Secondary Copper Grades and Definitions -- 18.3. Scrap Processing and Beneficiation -- 18.4. Summary -- References -- Suggested Reading -- Chapter 19 Chemical Metallurgy of Copper Recycling.

19.1. Characteristics of Secondary Copper -- 19.2. Scrap Processing in Primary Copper Smelters -- 19.3. The Secondary Copper Smelter -- 19.4. Summary -- References -- Suggested Reading -- Chapter 20 Melting and Casting -- 20.1. Product Grades and Quality -- 20.2. Melting Technology -- 20.3. Casting Machines -- 20.4. Summary -- References -- Suggested Reading -- Chapter 21 Byproduct and Waste Streams -- 21.1. Molybdenite Recovery and Processing -- 21.2. Flotation Reagents -- 21.3. Operation -- 21.4. Optimization -- 21.5. Anode Slimes -- 21.6. Dust Treatment -- 21.7. Use or Disposal of Slag -- 21.8. Summary -- References -- Suggested Reading -- Chapter 22 Costs of Copper Production -- 22.1. Overall Investment Costs: Mine through Refinery -- 22.2. Overall Direct Operating Costs: Mine through Refinery -- 22.3. Total Production Costs, Selling Prices, Profitability -- 22.4. Concentrating Costs -- 22.5. Smelting Costs -- 22.6. Electrorefining Costs -- 22.7. Production of Copper from Scrap -- 22.8. Leach/Solvent Extraction/Electrowinning Costs -- 22.9. Profitability -- 22.10. Summary -- References -- Suggested Reading -- Index.
Abstract:
This multi-author new edition revises and updates the classic reference by William G. Davenport et al (winner of, among other awards, the 2003 AIME Mineral Industry Educator of the Year Award "for inspiring students in the pursuit of clarity"), providing fully updated coverage of the copper production process, encompassing topics as diverse as environmental technology for wind and solar energy transmission, treatment of waste by-products, and recycling of electronic scrap for potential alternative technology implementation. The authors examine industrially grounded treatments of process fundamentals and the beneficiation of raw materials, smelting and converting, hydrometallurgical processes, and refining technology for a mine-to-market perspective - from primary and secondary raw materials extraction to shipping of rod or billet to customers. The modern coverage of the work includes bath smelting processes such as Ausmelt and Isasmelt, which have become state-of-the-art in sulfide concentrate smelting and converting. Drawing on extensive international industrial consultancies within working plants, this work describes in depth the complete copper production process, starting from both primary and secondary raw materials and ending with rod or billet being shipped to customers The work focuses particularly on currently-used industrial processes used to turn raw materials into refined copper metal rather than ideas working 'only on paper' New areas of coverage include the environmentally appropriate uses of copper cables in power transmission for wind and solar energy sources; the recycling of electronic scrap as an important new feedstock to the copper industry, and state-of-the-art Ausmelt and Isasmelt bath smelting processes for sulfide concentrate smelting and converting.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: