Cover image for Infrared and Raman Spectroscopy in Forensic Science.
Infrared and Raman Spectroscopy in Forensic Science.
Title:
Infrared and Raman Spectroscopy in Forensic Science.
Author:
Chalmers, John M.
ISBN:
9781119962335
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (680 pages)
Contents:
Infrared and Raman Spectroscopy in Forensic Science -- Contents -- About the Editors -- List of Contributors -- Preface -- SECTION I: INTRODUCTION -- 1 Introduction and Scope -- 1.1 Historical Prologue -- 1.2 The Application of Infrared Spectroscopy and Raman Spectroscopy in Forensic Science -- References -- 2 Vibrational Spectroscopy Techniques: Basics and Instrumentation -- 2.1 Introduction -- 2.2 Vibrational Spectroscopy Techniques -- 2.2.1 The basics and some comparisons -- 2.2.1.1 Wavelength/Wavenumber Ranges and Selection Rules -- 2.2.1.2 Sampling Considerations -- 2.2.1.3 Sensitivity, Surfaces and Signal Enhancement Techniques -- 2.2.1.4 IR and Raman Bands -- 2.2.2 Quantitative and classification analyses -- 2.2.2.1 Multivariate Data Analyses -- 2.2.2.2 Data Pre-Processing -- 2.2.3 Reference databases and search libraries/algorithms -- 2.3 Vibrational Spectroscopy: Instrumentation -- 2.3.1 Spectrometers -- 2.3.1.1 Sources -- 2.3.1.2 Detectors -- 2.3.1.3 Spectrometers and Interferometers -- 2.3.2 Vibrational spectroscopy-microscopy systems -- 2.3.2.1 Mapping and Imaging -- 2.3.3 Fibre optics and fibre-optic probes -- 2.3.4 Remote, portable, handheld, field-use, and stand-off vibrational spectroscopy instrumentation -- 2.4 Closing Remarks -- References -- 3 Vibrational Spectroscopy Sampling Techniques -- 3.1 Introduction -- 3.2 Vibrational Spectroscopy: Sampling Techniques -- 3.2.1 Raman spectroscopy -- 3.2.1.1 Raman Spectroscopy: Sampling Techniques and Considerations -- 3.2.1.2 Resonance Raman Spectroscopy -- 3.2.1.3 Surface Enhanced Raman Spectroscopy and Surface Enhanced Resonance Raman Spectroscopy -- 3.2.1.4 Spatially Offset Raman Spectroscopy -- 3.2.1.5 Transmission Raman Spectroscopy -- 3.2.1.6 Raman Microscopy/Microspectroscopy and Imaging -- 3.2.1.7 Remote and Fibre-Optic Probe Raman Spectroscopy -- 3.2.2 Mid-infrared spectroscopy.

3.2.2.1 Mid-Infrared Transmission Spectroscopy: Sampling Techniques -- 3.2.2.2 Mid-Infrared Reflection Spectroscopy Sampling Techniques -- 3.2.2.3 Mid-Infrared Photoacoustic Spectroscopy -- 3.2.2.4 Mid-Infrared Microscopy/Microspectroscopy and Imaging -- 3.2.3 Near-infrared spectroscopy: sampling techniques -- 3.2.3.1 Near-Infrared Transmission Spectroscopy -- 3.2.3.2 Near-Infrared Diffuse Reflection Spectroscopy -- 3.2.3.3 Near-Infrared Transflection Spectroscopy -- 3.2.3.4 Near-Infrared Spectroscopy: Interactance and Fibre-Optic Probe Measurements -- 3.2.3.5 Near-Infrared Microscopy and Imaging -- 3.2.4 Terahertz/far-infrared spectroscopy: sampling techniques -- 3.3 Closing Remarks -- Acknowledgements -- References -- SECTION II: CRIMINAL SCENE -- 4 Criminal Forensic Analysis -- 4.1 Introduction -- 4.2 Forensic Analysis -- 4.3 General Use of IR and Raman Spectroscopy in Forensic Analysis -- 4.3.1 Progression of infrared spectroscopy development in forensic analysis -- 4.3.2 Progression of Raman spectroscopy development in forensic analysis -- 4.3.3 Sampling methods -- 4.3.3.1 Microscopes -- 4.3.3.2 Reflection Methods -- 4.3.3.3 Gas Chromatography/IR -- 4.3.3.4 Spectral Imaging -- 4.4 Applications of Evidential Material Analysis -- 4.4.1 Polymers -- 4.4.1.1 General -- 4.4.1.2 Copy Toners -- 4.4.1.3 Fibres -- 4.4.1.4 Paints -- 4.4.1.5 Tapes -- 4.4.2 Drugs -- 4.4.3 Explosives -- 4.4.4 Fingerprint analysis -- 4.5 Summary and Future Direction -- Acknowledgements -- References -- 4.1 Forensic Analysis of Hair by Infrared Spectroscopy -- 4.1.1 Introduction -- 4.1.2 Basic Forensic Hair Analysis -- 4.1.3 Uniqueness of Hair to Chemical Analysis -- 4.1.4 Mechanism for Chemical Substance Incorporation into Hair -- 4.1.5 Applications -- 4.1.6 Disease Diagnosis -- 4.1.7 Summary -- References.

4.2 Raman Spectroscopy for Forensic Analysis of Household and Automotive Paints -- 4.2.1 Introduction -- 4.2.2 Paint Composition -- 4.2.3 Analysis of Resin Bases -- 4.2.4 White Paint -- 4.2.5 Coloured Household Paints -- 4.2.6 Multi-Layer Paints -- 4.2.7 Automotive Paint -- 4.2.8 Conclusions -- References -- 4.3 Raman Spectroscopy for the Characterisation of Inks on Written Documents -- 4.3.1 Introduction -- 4.3.2 Experimental -- 4.3.3 Chemical Differences in the Composition of Writing Inks through Time, and Modern Inks: Major Groups -- 4.3.4 Ink Discrimination -- 4.3.5 Forensic Test -- 4.3.6 Conclusions -- References -- 4.4 Forensic Analysis of Fibres by Vibrational Spectroscopy -- 4.4.1 Introduction -- 4.4.1.1 Forensic importance of fibres -- 4.4.1.2 Types of fibres -- 4.4.1.3 Dyes -- 4.4.1.4 Why use vibrational spectroscopy? -- 4.4.2 Infrared Spectroscopy -- 4.4.2.1 Instrumentation and sample preparation -- 4.4.2.2 Transmission mid-IR microspectroscopy -- 4.4.2.3 ATR IR microspectroscopy -- 4.4.2.4 IR synchrotron radiation -- 4.4.2.5 Mid-IR imaging -- 4.4.3 Raman Spectroscopy -- 4.4.3.1 Application to fibres -- 4.4.3.2 Surface-enhanced Raman scattering -- 4.4.3.3 Raman spectroscopy of titania filler -- 4.4.4 Data Analysis -- 4.4.5 Conclusions -- Acknowledgement -- References -- 4.5 In Situ Crime Scene Analysis -- 4.5.1 Introduction -- 4.5.2 Instrumentation -- 4.5.2.1 Raman spectrometers -- 4.5.2.2 Infrared spectrometers -- 4.5.3 Applications -- 4.5.3.1 Conditions of analysis -- 4.5.3.2 General chemical analysis -- 4.5.3.3 Explosives -- 4.5.3.4 Drugs -- 4.5.4 Conclusion -- Acknowledgements -- References -- 4.6 Raman spectroscopy gains currency -- 4.6.1 Introduction -- 4.6.2 Banknotes -- 4.6.3 Postage Stamps -- 4.6.4 Potential Forensic Applications -- 4.6.5 Conclusions -- Acknowledgements -- References.

SECTION III: COUNTER TERRORISM AND HOMELAND SECURITY -- 5 Counter Terrorism and Homeland Security -- 5.1 Introduction -- 5.2 Infrared and Raman Spectroscopy for Explosives Identification -- 5.2.1 Level of chemical identification -- 5.2.2 Capability to analyse a large range of explosives and related chemicals -- 5.2.3 Other positive features of IR and Raman spectroscopy in explosive analysis -- 5.2.4 Case Studies - Example 1 -- 5.3 Portable IR and Raman Instruments -- 5.3.1 Case Studies - Example 2 -- 5.4 Post-Blast Examinations -- 5.5 Detection of Explosives in Fingerprints -- 5.6 Spatially Offset Raman Spectroscopy -- 5.6.1 Applications of SORS in explosive analysis -- 5.7 Terahertz Spectroscopy of Explosives -- 5.7.1 Sampling modes and sample preparation -- 5.7.2 THz spectroscopy of explosives and explosive related materials -- 5.8 Summary -- Glossary -- References -- 5.1 Tracing Bioagents - a Vibrational Spectroscopic Approach for a Fast and Reliable Identification of Bioagents -- 5.1.1 Introduction -- 5.1.2 Toxins -- 5.1.3 Viruses -- 5.1.4 Bacteria -- 5.1.4.1 Bulk samples -- 5.1.4.2 Single bacterium identification -- 5.1.5 Conclusion -- Acknowledgement -- References -- 5.2 Raman Spectroscopic Studies of Explosives and Precursors: Applications and Instrumentation -- 5.2.1 Background -- 5.2.2 Introduction -- 5.2.3 UV Excited Raman Studies of Explosives -- 5.2.4 FT-Raman Studies of Explosives -- 5.2.5 Neither FT-Raman nor Traditional Dispersive Raman -- 5.2.6 Surface Enhanced Raman and Surface Enhanced Resonance Raman Studies of Explosives -- 5.2.7 Dispersive Raman Studies of Explosives -- 5.2.8 Compact Dispersive Raman Spectrometers for the Study of Explosives -- 5.2.9 Spatially Offset Raman Spectroscopy -- 5.2.10 Stand-Off Raman of Explosives -- 5.2.11 Raman Microscopy and Imaging -- 5.2.12 Vehicle-Mounted Raman Analysers.

5.2.13 Classification Schema for Explosives -- 5.2.14 Summary -- References -- 5.3 Handheld Raman and FT-IR Spectrometers -- 5.3.1 Introduction -- 5.3.2 Handheld/Portable Raman and FT-IR Devices -- 5.3.3 Explosives -- 5.3.4 Tactical Considerations -- 5.3.5 Sample Considerations -- 5.3.6 Raman and FT-IR Spectroscopy Explosive Identification Capabilities -- 5.3.7 Performance Characterisation -- 5.3.8 Summary -- Disclaimer -- References -- 5.4 Non-Invasive Detection of Concealed Liquid and Powder Explosives using Spatially Offset Raman spectroscopy -- 5.4.1 Introduction -- 5.4.2 Discussion and Examples -- 5.4.3 Summary -- References -- 5.5 Terahertz Frequency Spectroscopy and its Potential for Security Applications -- 5.5.1 Introduction -- 5.5.2 Terahertz Frequency Radiation -- 5.5.3 Terahertz Time-Domain Spectroscopy -- 5.5.4 Examples of the Use of THz Spectroscopy to Detect Materials of Security Interest -- 5.5.4.1 Explosives -- 5.5.4.2 Drugs of abuse -- 5.5.4.3 Terahertz frequency imaging -- 5.5.4.4 Spectroscopy and imaging of concealed materials -- 5.5.5 Conclusions and Future Outlook -- Acknowledgements -- References -- SECTION IV: DRUGS AND DRUGS OF ABUSE -- 6 Raman Spectroscopy of Drugs of Abuse -- 6.1 Introduction -- 6.2 Bulk Drugs -- 6.2.1 General introduction -- 6.2.2 Experimental considerations -- 6.2.3 Laboratory-based methods -- 6.2.3.1 Screening and Identification -- 6.2.3.2 Quantitative Analysis -- 6.2.3.3 Composition Profiling -- 6.2.4 Raman outside the laboratory -- 6.3 Trace Detection -- 6.3.1 Drug microparticles -- 6.3.2 Surface-enhanced Raman spectroscopy -- 6.4 Conclusions -- References -- 6.1 Drugs of Abuse - Application of Handheld FT-IR and Raman Spectrometers -- 6.1.1 Introduction -- 6.1.2 Advantages of Vibrational Spectroscopy -- 6.1.3 General Drugs of Abuse - Introduction -- 6.1.4 Vibrational Spectroscopy.

6.1.5 Analysis of Street Samples.
Abstract:
For many years the practices of infrared and Raman spectroscopy were confined largely to dedicated academic, industrial or national research laboratories. Major technical advances over the last 10-20 years have resulted in smaller, easier to use instrumentation that is much more user-friendly. Demands and needs from users for increased portability of scientific instrumentation have produced spectrometers and interferometers of small dimensions and of sufficient quality such that handheld Raman and Fourier transform infrared (FT-IR) instruments have been realized over the last few years, opening up much wider application of Raman and infrared spectroscopy to forensic science applications, particularly for adoption into field usage. This unique reference book provides An introduction to the principles of forensic science and how Raman and infrared spectroscopy can be applied Relevant application examples, highlighting how infrared, Raman and THz spectroscopy can be applied to these fields Coverage of key areas of instrumentation, sampling, crime scenes, drugs of abuse and homeland security with case study chapters Extensively referenced chapters making further reading and investigation simpler for the reader This book is intended to introduce both a novice or an established spectroscopic practitioner of analytical chemistry to the technical elements of Raman and infrared spectroscopy as applied to forensic science, outlining several proven and potential applications within this field.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: