Cover image for Properties of Materials : Anisotropy, Symmetry, Structure.
Properties of Materials : Anisotropy, Symmetry, Structure.
Title:
Properties of Materials : Anisotropy, Symmetry, Structure.
Author:
Newnham, Robert E.
ISBN:
9780191523403
Personal Author:
Physical Description:
1 online resource (391 pages)
Contents:
Contents -- 1 Introduction -- 1.1 Outline -- 1.2 Structure-property relationships -- 1.3 Symmetry of physical properties -- 1.4 Atomistic arguments: Density -- 2 Transformations -- 2.1 Why transformations? -- 2.2 Axis transformations -- 2.3 Orthogonality conditions -- 2.4 General rotation (Eulerian angles) -- 3 Symmetry -- 3.1 Symmetry operations -- 3.2 Symmetry elements and stereographic projections -- 3.3 Point groups and their stereograms -- 3.4 Crystallographic nomenclature -- 3.5 Point group populations -- 4 Transformation operators for symmetry elements -- 4.1 Transformation operators for the crystallographic symmetry elements -- 4.2 Transformation operations for the thirty-two crystal classes -- 4.3 Standard settings -- 4.4 Curie group symmetries -- 5 Tensors and physical properties -- 5.1 Physical properties -- 5.2 Polar tensors and tensor properties -- 5.3 Axial tensor properties -- 5.4 Geometric representations -- 5.5 Neumann's Principle -- 5.6 Analytical form of Neumann's Principle -- 6 Thermodynamic relationships -- 6.1 Linear systems -- 6.2 Coupled interactions: Maxwell relations -- 6.3 Measurement conditions -- 7 Specific heat and entropy -- 7.1 Heat capacity of solids -- 7.2 Lattice vibrations -- 7.3 Entropy and the magnetocaloric effect -- 8 Pyroelectricity -- 8.1 Pyroelectric and electrocaloric tensors -- 8.2 Symmetry limitations -- 8.3 Polar axes -- 8.4 Geometric representation -- 8.5 Pyroelectric measurements -- 8.6 Primary and secondary pyroelectric effects -- 8.7 Pyroelectric materials -- 8.8 Temperature dependence -- 8.9 Applications -- 9 Dielectric constant -- 9.1 Origins of the dielectric constant -- 9.2 Dielectric tensor -- 9.3 Effect of symmetry -- 9.4 Experimental methods -- 9.5 Geometric representation -- 9.6 Polycrystalline dielectrics -- 9.7 Structure-property relationships -- 10 Stress and strain.

10.1 Mechanical stress -- 10.2 Stress transformations -- 10.3 Strain tensor -- 10.4 Matrix transformation for strain -- 11 Thermal expansion -- 11.1 Effect of symmetry -- 11.2 Thermal expansion measurements -- 11.3 Structure-property relations -- 11.4 Temperature dependence -- 12 Piezoelectricity -- 12.1 Tensor and matrix formulations -- 12.2 Matrix transformations and Neumann's Law -- 12.3 Piezoelectric symmetry groups -- 12.4 Experimental techniques -- 12.5 Structure-property relations -- 12.6 Hydrostatic piezoelectric effect -- 12.7 Piezoelectric ceramics -- 12.8 Practical piezoelectrics: Quartz crystals -- 13 Elasticity -- 13.1 Tensor and matrix coefficients -- 13.2 Tensor and matrix transformations -- 13.3 Stiffness-compliance relations -- 13.4 Effect of symmetry -- 13.5 Engineering coefficients and measurement methods -- 13.6 Anisotropy and structure-property relations -- 13.7 Compressibility -- 13.8 Polycrystalline averages -- 13.9 Temperature coefficients -- 13.10 Quartz crystal resonators -- 14 Magnetic phenomena -- 14.1 Basic ideas and units -- 14.2 Magnetic structures and time reversal -- 14.3 Magnetic point groups -- 14.4 Magnetic axial vectors -- 14.5 Saturation magnetization and pyromagnetism -- 14.6 Magnetic susceptibility and permeability -- 14.7 Diamagnetic and paramagnetic crystals -- 14.8 Susceptibility measurements -- 14.9 Magnetoelectricity -- 14.10 Piezomagnetism -- 14.11 Summary -- 15 Nonlinear phenomena -- 15.1 Nonlinear dielectric properties -- 15.2 Nonlinear elastic properties -- 15.3 Electrostriction -- 15.4 Magnetostriction -- 15.5 Modeling magnetostriction -- 15.6 Magnetostrictive actuators -- 15.7 Electromagnetostriction and pseudopiezoelectricity -- 16 Ferroic crystals -- 16.1 Free energy formulation -- 16.2 Ferroelasticity -- 16.3 Ferromagnetism -- 16.4 Magnetic anisotropy -- 16.5 Ferroelectricity.

16.6 Secondary ferroics: Ferrobielectricity and ferrobimagnetism -- 16.7 Secondary ferroics: Ferrobielasticity and ferroelastoelectricity -- 16.8 Secondary ferroics: Ferromagnetoelectrics and ferromagnetoelastics -- 16.9 Order parameters -- 17 Electrical resistivity -- 17.1 Tensor and matrix relations -- 17.2 Resistivity measurements -- 17.3 Electrode metals -- 17.4 Anisotropic conductors -- 17.5 Semiconductors and insulators -- 17.6 Band gap and mobility -- 17.7 Nonlinear behavior: Varistors and thermistors -- 17.8 Quasicrystals -- 18 Thermal conductivity -- 18.1 Tensor nature and experiments -- 18.2 Structure-property relationships -- 18.3 Temperature dependence -- 18.4 Field dependence -- 19 Diffusion and ionic conductivity -- 19.1 Definition and tensor formulation -- 19.2 Structure-property relationships -- 19.3 Ionic conductivity -- 19.4 Superionic conductors -- 19.5 Cross-coupled diffusion -- 20 Galvanomagnetic and thermomagnetic phenomena -- 20.1 Galvanomagnetic effects -- 20.2 Hall Effect and magnetoresistance -- 20.3 Underlying physics -- 20.4 Galvanomagnetic effects in magnetic materials -- 20.5 Thermomagnetic effects -- 21 Thermoelectricity -- 21.1 Seebeck Effect -- 21.2 Peltier Effect -- 21.3 Thomson Effect -- 21.4 Kelvin Relations and absolute thermopower -- 21.5 Practical thermoelectric materials -- 21.6 Tensor relationships -- 21.7 Magnetic field dependence -- 22 Piezoresistance -- 22.1 Tensor description -- 22.2 Matrix form -- 22.3 Longitudinal and transverse gages -- 22.4 Structure-property relations -- 23 Acoustic waves I -- 23.1 The Christoffel Equation -- 23.2 Acoustic waves in hexagonal crystals -- 23.3 Matrix representation -- 23.4 Isotropic solids and pure mode directions -- 23.5 Phase velocity and group velocity -- 24 Acoustic waves II -- 24.1 Acoustic impedance -- 24.2 Ultrasonic attenuation.

24.3 Physical origins of attenuation -- 24.4 Surface acoustic waves -- 24.5 Elastic waves in piezoelectric media -- 24.6 Nonlinear acoustics -- 25 Crystal optics -- 25.1 Electromagnetic waves -- 25.2 Optical indicatrix and refractive index measurements -- 25.3 Wave normals and ray directions -- 25.4 Structure-property relationships -- 25.5 Birefringence and crystal structure -- 26 Dispersion and absorption -- 26.1 Dispersion -- 26.2 Absorption, color, and dichroism -- 26.3 Reflectivity and luster -- 26.4 Thermo-optic effect -- 27 Photoelasticity and acousto-optics -- 27.1 Basic concepts -- 27.2 Photoelasticity -- 27.3 Static photoelastic measurements -- 27.4 Acousto-optics -- 27.5 Anisotropic media -- 27.6 Material issues -- 28 Electro-optic phenomena -- 28.1 Linear electro-optic effect -- 28.2 Pockels Effect in KDP and ADP -- 28.3 Linear electro-optic coefficients -- 28.4 Quadratic electro-optic effect -- 29 Nonlinear optics -- 29.1 Structure-property relations -- 29.2 Tensor formulation and frequency conversion -- 29.3 Second harmonic generation -- 29.4 Phase matching -- 29.5 Third harmonic generation -- 30 Optical activity and enantiomorphism -- 30.1 Molecular origins -- 30.2 Tensor description -- 30.3 Effect of symmetry -- 30.4 Relationship to enantiomorphism -- 30.5 Liquids and liquid crystals -- 30.6 Dispersion and circular dichroism -- 30.7 Electrogyration, piezogyration, and thermogyration -- 31 Magneto-optics -- 31.1 The Faraday Effect -- 31.2 Tensor nature -- 31.3 Faraday Effect in microwave magnetics -- 31.4 Magneto-optic recording media -- 31.5 Magnetic circular dichroism -- 31.6 Nonlinear magneto-optic effects -- 31.7 Magnetoelectric optical phenomena -- 32 Chemical anisotropy -- 32.1 Crystal morphology -- 32.2 Growth velocity -- 32.3 Crystal growth and crystal structure -- 32.4 Surface structures and surface transformations.

32.5 Etch figures and symmetry relations -- 32.6 Micromachining of quartz and silicon -- 32.7 Tensor description -- Further Reading -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- V -- W.
Abstract:
This book is a clear academic authority on the properties of a breadth of crystalline materials for many applications. It is particularly suitable for science and engineering students in the final years of undergraduate studies and a useful reference for research students in electrical, magnetic and optical materials science and engineering. Times Higher, December 2005. -.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: