Cover image for High-K Gate Dielectrics for CMOS Technology.
High-K Gate Dielectrics for CMOS Technology.
Title:
High-K Gate Dielectrics for CMOS Technology.
Author:
He, Gang.
ISBN:
9783527646371
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (592 pages)
Contents:
High-k Gate Dielectrics for CMOS Technology -- Contents -- Preface -- List of Contributors -- Color Plates -- Part One Scaling and Challenge of Si-based CMOS -- 1 Scaling and Limitation of Si-based CMOS -- 1.1 Introduction -- 1.2 Scaling and Limitation of CMOS -- 1.2.1 Device Scaling and Power Dissipation -- 1.2.2 Gate Oxide Tunneling -- 1.2.3 Gate Oxide Scaling Trends -- 1.2.4 Scaling and Limitation of SiO2 Gate Dielectrics -- 1.2.5 Silicon Oxynitrides -- 1.3 Toward Alternative Gate Stacks Technology -- 1.3.1 Advances and Challenges in Dielectric Development -- 1.3.2 Advances and Challenges in Electrode Development -- 1.4 Improvements and Alternative to CMOS Technologies -- 1.4.1 Improvement to CMOS -- 1.4.1.1 New Materials -- 1.4.1.2 New Structures -- 1.5 Potential Technologies Beyond CMOS -- 1.6 Conclusions -- References -- Part Two High-k Deposition and Materials Characterization -- 2 Issues in High-k Gate Dielectrics and its Stack Interfaces -- 2.1 Introduction -- 2.2 High-k Dielectrics -- 2.2.1 The Criteria Required for High-k Dielectrics -- 2.2.2 The Challenges of High-k Dielectrics -- 2.2.2.1 Structural Defects -- 2.2.2.2 Channel Mobility Degradation -- 2.2.2.3 Threshold Voltage Control -- 2.2.2.4 Reliability -- 2.3 Metal Gates -- 2.3.1 Basic Requirements for Metal Gates -- 2.3.2 Metal Gate Materials -- 2.3.2.1 Pure Metals -- 2.3.2.2 Metallic Alloys -- 2.3.2.3 Metal Nitrides -- 2.3.2.4 Metal Silicides -- 2.3.3 Work Function -- 2.3.4 Metal Gate Structures -- 2.3.5 Metal Gate/High-k Integration -- 2.3.6 Process Integration -- 2.4 Integration of High-k Gate Dielectrics with Alternative Channel Materials -- 2.4.1 High-k/Ge Interface -- 2.4.2 High-k/III-V Interface -- 2.5 Summary -- References -- 3 UV Engineering of High-k Thin Films -- 3.1 Introduction -- 3.2 Gas Discharge Generation of UV (Excimer) Radiation.

3.3 Excimer Lamp Sources Based on Silent Discharges -- 3.4 Predeposition Surface Cleaning for High-k Layers -- 3.5 UV Photon Deposition of Ta2O5 Films -- 3.6 Photoinduced Deposition of Hf1-xSixOy Layers -- 3.7 Summary -- References -- 4 Atomic Layer Deposition Process of Hf-Based High-k Gate Dielectric Film on Si Substrate -- 4.1 Introduction -- 4.2 Precursor Effect on the HfO2 Characteristics -- 4.2.1 Hafnium Precursor Effect on the HfO2 Dielectric Characteristics -- 4.2.1.1 Hafnium Chloride (HfCl4) -- 4.2.1.2 Tetrakis Dimethylamido Hafnium [HfN(CH3)2]4 -- 4.2.1.3 Tetrakis Ethylmethylamino Hafnium (Hf[N(C2H5)(CH3)]4) -- 4.2.1.4 tert-Butoxytris[Ethylmethylamido] Hafnium (HfOtBu[NEtMe]3) -- 4.2.1.5 tert-Butoxide Hafnium (Hf[OC4H9]4) -- 4.2.2 Oxygen Sources and Reactants -- 4.2.2.1 H2O versus O3 -- 4.2.2.2 O3 Concentration -- 4.2.2.3 Reactants for In Situ N Incorporation -- 4.3 Doped and Mixed High-k -- 4.3.1 Zr-Doped HfO2 -- 4.3.2 Si-Doped HfO2 -- 4.3.3 Al-Doped HfO2 -- 4.4 Summary -- References -- 5 Structural and Electrical Characteristics of Alternative High-k Dielectrics for CMOS Applications -- 5.1 Introduction -- 5.2 Requirement of High-k Oxide Materials -- 5.3 Rare-Earth Oxide as Alternative Gate Dielectrics -- 5.4 Structural Characteristics of High-k RE Oxide Films -- 5.4.1 Process Compatibility -- 5.4.2 X-Ray Diffraction Analysis -- 5.4.3 Atomic Force Microscope Investigation -- 5.4.4 Transmission Electron Microscopy Technique -- 5.4.5 X-Ray Photoelectron Spectroscopy Analysis -- 5.5 Electrical Characteristics of High-k RE Oxide Films -- 5.5.1 The Threshold Voltage, Flatband Voltage, Interface Trap, and Fixed Charge -- 5.5.2 Leakage Mechanism -- 5.5.2.1 Schottky or Thermionic Emission -- 5.5.2.2 Fowler-Nordheim Tunneling -- 5.5.2.3 Direct Tunneling -- 5.5.2.4 Thermionic Field Emission -- 5.5.2.5 Poole-Frenkel Emission.

5.5.2.6 Hopping Conduction -- 5.5.2.7 Ohmic Conduction -- 5.5.2.8 Space Charge-Limited Conduction -- 5.5.2.9 Ionic Conduction -- 5.5.2.10 Grain Boundary-Limited Conduction -- 5.5.3 High-k Silicon Interface -- 5.5.4 Band Alignment -- 5.5.5 Channel Mobility -- 5.5.6 Dielectric Breakdown -- 5.6 Conclusions and Perspectives -- References -- 6 Hygroscopic Tolerance and Permittivity Enhancement of Lanthanum Oxide (La2O3) for High-k Gate Insulators -- 6.1 Introduction -- 6.2 Hygroscopic Phenomenon of La2O3 Films -- 6.2.1 Effect of Moisture Absorption on Surface Roughness of La2O3 Films -- 6.2.2 Effect of Moisture Absorption on Electrical Properties of La2O3 Films -- 6.3 Low Permittivity Phenomenon of La2O3 Films -- 6.3.1 Moisture Absorption-Induced Permittivity Degradation of La2O3 Films -- 6.3.2 Permittivity of La2O3 Films without Moisture Absorption -- 6.4 Hygroscopic Tolerance Enhancement of La2O3 Films -- 6.4.1 Hygroscopic Tolerance Enhancement of La2O3 Films by Y2O3 Doping -- 6.5 Hygroscopic Tolerance Enhancement of La2O3 Films by Ultraviolet Ozone Treatment -- 6.6 Thermodynamic Analysis of Moisture Absorption Phenomenon in High-k Gate Dielectrics -- 6.7 Permittivity Enhancement of La2O3 Films by Phase Control -- 6.7.1 Experimental Procedures and Characterizations -- 6.7.2 Permittivity Enhancement by Phase Control due to Y2O3 Doping -- 6.7.3 Higher-k Amorphous La1-xTaxOy Films -- 6.8 Summary -- References -- 7 Characterization of High-k Dielectric Internal Structure by X-Ray Spectroscopy and Reflectometry: New Approaches to Interlayer Identification and Analysis -- 7.1 Introduction -- 7.2 Chemical Bonding and Crystalline Structure of Transition Metal Dielectrics -- 7.3 NEXAFS Investigation of Internal Structure -- 7.4 Studying the Internal Structure of High-K Dielectric Films by Hard X-Ray Photoelectron Spectroscopy and TEM.

7.5 Studying the Internal Structure of High-K Dielectric Films by X-ray Reflectometry -- 7.5.1 Reconstruction of the Dielectric Constant Profile by Hard X-Ray Reflectometry -- 7.5.2 Reconstruction of the Depth Distribution of Chemical Elements Concentration by Soft X-Ray Reflectometry -- References -- 8 High-k Insulating Films on Semiconductors and Metals: General Trends in Electron Band Alignment -- 8.1 Introduction -- 8.2 Band Offsets and IPE Spectroscopy -- 8.3 Silicon/Insulator Band Offsets -- 8.4 Band Alignment at Interfaces of High-Mobility Semiconductors -- 8.5 Metal/Insulator Barriers -- 8.6 Conclusions -- References -- Part Three Challenge in Interface Engineering and Electrode -- 9 Interface Engineering in the High-k Dielectric Gate Stacks -- 9.1 Introduction -- 9.2 High-k Oxide/Si Interfaces -- 9.2.1 Growth of Crystalline High-k Oxide on Semiconductors -- 9.2.2 Measurement of Band Alignment at High-k Oxide/Si Interfaces -- 9.3 Metal Gate/High-k Dielectric Interfaces -- 9.4 Chemical Tuning of Band Alignments for Metal Gate/High-k Oxide Interfaces -- 9.5 Summary and Discussion -- References -- 10 Interfacial Dipole Effects on High-k Gate Stacks -- 10.1 Introduction -- 10.2 Metal Gate Consideration -- 10.3 Interfacial Dipole Effects in High-k Gate Stacks -- 10.3.1 Modification of the Gate Work Function by the Interfacial Dipole -- 10.3.2 Fermi-Level Pinning Effects at Gate/High-k Interfaces -- 10.3.3 Micromodels for the Interfacial Dipole in High-k Stacks -- 10.3.3.1 Fermi-Level Pinning -- 10.3.3.2 Oxygen Vacancy Model -- 10.3.3.3 Pauling Electronegativity Model -- 10.3.3.4 Area Oxygen Density Model -- 10.4 Observation of the Interfacial Dipole in High-k Stacks -- 10.4.1 Flatband Voltage Shifts in Capacitance-Voltage Measurements -- 10.4.2 Core-Level Binding Energy Shift in Photoelectron Spectroscopy.

10.4.2.1 Band Discontinuities and Schottky Barrier Analysis in Heterostructures -- 10.4.2.2 Interfacial Charge Investigation -- 10.4.2.3 Band Alignment Determination -- 10.4.2.4 Interfacial Dipole Measurement by Photoelectron Spectroscopy -- 10.4.3 Band Alignments Measured by Using Internal Photoemission -- 10.4.4 Potential Shifts in Kelvin Probe Measurements -- 10.5 Summary -- References -- 11 Metal Gate Electrode for Advanced CMOS Application -- 11.1 The Scaling and Improved Performance of MOSFET Devices -- 11.2 Urgent Issues about MOS Gate Materials for Sub-0.1 mm Device Gate Stack -- 11.2.1 SiO2 Gate Dielectric -- 11.2.2 Polysilicon Electrode -- 11.3 New Requirements of MOS Gate Materials for Sub-0.1 mm Device Gate Stack -- 11.3.1 High-k Gate Dielectric -- 11.3.2 Metal Gate Electrode -- 11.4 Summary -- References -- Part Four Development in non-Si-based CMOS technology -- 12 Metal Gate/High-k CMOS Evolution from Si to Ge Platform -- 12.1 Introduction -- 12.2 High-k/Si CMOSFETs -- 12.2.1 Potential Interface Reaction Mechanism -- 12.2.2 Inserting an Ultrathin SiON -- 12.2.3 Low-Temperature Process -- 12.3 High-k/Ge CMOSFETs -- 12.3.1 Defect-Free Ge-on-Insulator -- 12.3.2 The Challenge for Ge n-MOS -- 12.3.3 High-Mobility Ge n-MOS Using Novel Technology -- 12.4 Ge Platform -- 12.4.1 Logic and Memory Integration -- 12.4.2 3D GeOI/Si IC -- 12.5 Conclusions -- References -- 13 Theoretical Progress on GaAs (001) Surface and GaAs/high-k Interface -- 13.1 Introduction -- 13.2 Computational Method -- 13.3 GaAs Surface Oxidation and Passivation -- 13.3.1 Clean GaAs Surface -- 13.3.2 GaAs Surface Oxidation -- 13.3.3 Passivation of the Oxidized GaAs Surface -- 13.3.4 Initial oxidation of the GaAs(001)-β2(2 x 4) Surface -- 13.4 Origin of Gap States at the High-k/GaAs Interface and Interface Passivation -- 13.4.1 Strained HfO2/GaAs Interface.

13.4.2 Strain-Free GaAs/HfO2 Interfaces.
Abstract:
A state-of-the-art overview of high-k dielectric materials for advanced field-effect transistors, from both a fundamental and a technological viewpoint, summarizing the latest research results and development solutions. As such, the book clearly discusses the advantages of these materials over conventional materials and also addresses the issues that accompany their integration into existing production technologies. Aimed at academia and industry alike, this monograph combines introductory parts for newcomers to the field as well as advanced sections with directly applicable solutions for experienced researchers and developers in materials science, physics and electrical engineering.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: