Cover image for Algebraic Identification and Estimation Methods in Feedback Control Systems.
Algebraic Identification and Estimation Methods in Feedback Control Systems.
Title:
Algebraic Identification and Estimation Methods in Feedback Control Systems.
Author:
Sira-Ramírez, Hebertt.
ISBN:
9781118730584
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (391 pages)
Series:
Wiley Series in Dynamics and Control of Electromechanical Systems
Contents:
Cover -- Title Page -- Copyright -- Contents -- Series Preface -- Preface -- Chapter 1 Introduction -- 1.1 Feedback Control of Dynamic Systems -- 1.1.1 Feedback -- 1.1.2 Why Do We Need Feedback? -- 1.2 The Parameter Identification Problem -- 1.2.1 Identifying a System -- 1.3 A Brief Survey on Parameter Identification -- 1.4 The State Estimation Problem -- 1.4.1 Observers -- 1.4.2 Reconstructing the State via Time Derivative Estimation -- 1.5 Algebraic Methods in Control Theory: Differences from Existing Methodologies -- 1.6 Outline of the Book -- References -- Chapter 2 Algebraic Parameter Identification in Linear Systems -- 2.1 Introduction -- 2.1.1 The Parameter-Estimation Problem in Linear Systems -- 2.2 Introductory Examples -- 2.2.1 Dragging an Unknown Mass in Open Loop -- 2.2.2 A Perturbed First-Order System -- 2.2.3 The Visual Servoing Problem -- 2.2.4 Balancing of the Plane Rotor -- 2.2.5 On the Control of the Linear Motor -- 2.2.6 Double-Bridge Buck Converter -- 2.2.7 Closed-Loop Behavior -- 2.2.8 Control of an unknown variable gain motor -- 2.2.9 Identifying Classical Controller Parameters -- 2.3 A Case Study Introducing a "Sentinel'' Criterion -- 2.3.1 A Suspension System Model -- 2.4 Remarks -- References -- Chapter 3 Algebraic Parameter Identification in Nonlinear Systems -- 3.1 Introduction -- 3.2 Algebraic Parameter Identification for Nonlinear Systems -- 3.2.1 Controlling an Uncertain Pendulum -- 3.2.2 A Block-Driving Problem -- 3.2.3 The Fully Actuated Rigid Body -- 3.2.4 Parameter Identification Under Sliding Motions -- 3.2.5 Control of an Uncertain Inverted Pendulum Driven by a DC Motor -- 3.2.6 Identification and Control of a Convey Crane -- 3.2.7 Identification of a Magnetic Levitation System.

3.3 An Alternative Construction of the System of Linear Equations -- 3.3.1 Genesio-Tesi Chaotic System -- 3.3.2 The Ueda Oscillator -- 3.3.3 Identification and Control of an Uncertain Brushless DC Motor -- 3.3.4 Parameter Identification and Self-tuned Control for the Inertia Wheel Pendulum -- 3.3.5 Algebraic Parameter Identification for Induction Motors -- 3.3.6 A Criterion to Determine the Estimator Convergence: The Error Index -- 3.4 Remarks -- References -- Chapter 4 Algebraic Parameter Identification in Discrete-Time Systems -- 4.1 Introduction -- 4.2 Algebraic Parameter Identification in Discrete-Time Systems -- 4.2.1 Main Purpose of the Chapter -- 4.2.2 Problem Formulation and Assumptions -- 4.2.3 An Introductory Example -- 4.2.4 Samuelson's Model of the National Economy -- 4.2.5 Heating of a Slab from Two Boundary Points -- 4.2.6 An Exact Backward Shift Reconstructor -- 4.3 A Nonlinear Filtering Scheme -- 4.3.1 Hénon System -- 4.3.2 A Hard Disk Drive -- 4.3.3 The Visual Servo Tracking Problem -- 4.3.4 A Shape Control Problem in a Rolling Mill -- 4.3.5 Algebraic Frequency Identification of a Sinusoidal Signal by Means of Exact Discretization -- 4.4 Algebraic Identification in Fast-Sampled Linear Systems -- 4.4.1 The Delta-Operator Approach: A Theoretical Framework -- 4.4.2 Delta-Transform Properties -- 4.4.3 A DC Motor Example -- 4.5 Remarks -- References -- Chapter 5 State and Parameter Estimation in Linear Systems -- 5.1 Introduction -- 5.1.1 Signal Time Derivation Through the "Algebraic Derivative Method'' -- 5.1.2 Observability of Nonlinear Systems -- 5.2 Fast State Estimation -- 5.2.1 An Elementary Second-Order Example -- 5.2.2 An Elementary Third-Order Example -- 5.2.3 A Control System Example -- 5.2.4 Control of a Perturbed Third-Order System -- 5.2.5 A Sinusoid Estimation Problem.

5.2.6 Identification of Gravitational Wave Parameters -- 5.2.7 A Power Electronics Example -- 5.2.8 A Hydraulic Press -- 5.2.9 Identification and Control of a Plotter -- 5.3 Recovering Chaotically Encrypted Signals -- 5.3.1 State Estimation for a Lorenz System -- 5.3.2 State Estimation for Chen's System -- 5.3.3 State Estimation for Chua's Circuit -- 5.3.4 State Estimation for Rossler's System -- 5.3.5 State Estimation for the Hysteretic Circuit -- 5.3.6 Simultaneous Chaotic Encoding-Decoding with Singularity Avoidance -- 5.3.7 Discussion -- 5.4 Remarks -- References -- Chapter 6 Control of Nonlinear Systems via Output Feedback -- 6.1 Introduction -- 6.2 Time-Derivative Calculations -- 6.2.1 An Introductory Example -- 6.2.2 Identifying a Switching Input -- 6.3 The Nonlinear Systems Case -- 6.3.1 Control of a Synchronous Generator -- 6.3.2 Control of a Multi-variable Nonlinear System -- 6.3.3 Experimental Results on a Mechanical System -- 6.4 Remarks -- References -- Chapter 7 Miscellaneous Applications -- 7.1 Introduction -- 7.1.1 The Separately Excited DC Motor -- 7.1.2 Justification of the ETEDPOF Controller -- 7.1.3 A Sensorless Scheme Based on Fast Adaptive Observation -- 7.1.4 Control of the Boost Converter -- 7.2 Alternative Elimination of Initial Conditions -- 7.2.1 A Bounded Exponential Function -- 7.2.2 Correspondence in the Frequency Domain -- 7.2.3 A System of Second Order -- 7.3 Other Functions of Time for Parameter Estimation -- 7.3.1 A Mechanical System Example -- 7.3.2 A Derivative Approach to Demodulation -- 7.3.3 Time Derivatives via Parameter Identification -- 7.3.4 Example -- 7.4 An Algebraic Denoising Scheme -- 7.4.1 Example -- 7.4.2 Numerical Results -- 7.5 Remarks -- References -- Appendix A Parameter Identification in Linear Continuous Systems: A Module Approach -- A.1 Generalities on Linear Systems Identification.

A.1.1 Example -- A.1.2 Some Definitions and Results -- A.1.3 Linear Identifiability -- A.1.4 Structured Perturbations -- A.1.5 The Frequency Domain Alternative -- References -- Appendix B Parameter Identification in Linear Discrete Systems: A Module Approach -- B.1 A Short Review of Module Theory over Principal Ideal Ring -- B.1.1 Systems -- B.1.2 Perturbations -- B.1.3 Dynamics and Input-Output Systems -- B.1.4 Transfer Matrices -- B.1.5 Identifiability -- B.1.6 An Algebraic Setting for Identifiability -- B.1.7 Linear identifiability of transfer functions -- B.1.8 Linear Identification of Perturbed Systems -- B.1.9 Persistent Trajectories -- References -- Appendix C Simultaneous State and Parameter Estimation: An Algebraic Approach -- C.1 Rings, Fields and Extensions -- C.2 Nonlinear Systems -- C.2.1 Differential Flatness -- C.2.2 Observability and Identifiability -- C.2.3 Observability -- C.2.4 Identifiable Parameters -- C.2.5 Determinable Variables -- C.3 Numerical Differentiation -- C.3.1 Polynomial Time Signals -- C.3.2 Analytic Time Signals -- C.3.3 Noisy Signals -- References -- Appendix D Generalized Proportional Integral Control -- D.1 Generalities on GPI Control -- D.2 Generalization to MIMO Linear Systems -- References -- Index.
Abstract:
Algebraic Identification and Estimation Methods in Feedback Control Systems presents a model-based algebraic approach to online parameter and state estimation in uncertain dynamic feedback control systems. This approach evades the mathematical intricacies of the traditional stochastic approach, proposing a direct model-based scheme with several easy-to-implement computational advantages. The approach can be used with continuous and discrete, linear and nonlinear, mono-variable and multi-variable systems. The estimators based on this approach are not of asymptotic nature, and do not require any statistical knowledge of the corrupting noises to achieve good performance in a noisy environment. These estimators are fast, robust to structured perturbations, and easy to combine with classical or sophisticated control laws. This book uses module theory, differential algebra, and operational calculus in an easy-to-understand manner and also details how to apply these in the context of feedback control systems. A wide variety of examples, including mechanical systems, power converters, electric motors, and chaotic systems, are also included to illustrate the algebraic methodology.  Key features: Presents a radically new approach to online parameter and state estimation. Enables the reader to master the use and understand the consequences of the highly theoretical differential algebraic viewpoint in control systems theory. Includes examples in a variety of physical applications with experimental results. Covers the latest developments and applications. Algebraic Identification and Estimation Methods in Feedback Control Systems is a comprehensive reference for researchers and practitioners working in the area of automatic control, and is also a useful source of information for graduate and undergraduate students.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: