Cover image for Introduction to Digital Communication Systems.
Introduction to Digital Communication Systems.
Title:
Introduction to Digital Communication Systems.
Author:
Wesolowski, Krzysztof.
ISBN:
9780470695197
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (579 pages)
Contents:
Introduction to Digital Communication Systems -- Contents -- Preface -- About the Author -- 1 Elements of Information Theory -- 1.1 Introduction -- 1.2 Basic Concepts -- 1.3 Communication System Model -- 1.4 Concept of Information and Measure of Amount of Information -- 1.5 Message Sources and Source Coding -- 1.5.1 Models of Discrete Memory Sources -- 1.5.2 Discrete Memoryless Source -- 1.5.3 Extension of a Memoryless Source -- 1.5.4 Markov Sources -- 1.5.5 Entropy of the Markov Source -- 1.5.6 Source Associated with the Markov Source -- 1.6 Discrete Source Coding -- 1.6.1 Huffman Coding -- 1.6.2 Shannon-Fano Coding -- 1.6.3 Dynamic Huffman Coding -- 1.6.4 Arithmetic Coding -- 1.6.5 Lempel-Ziv Algorithm -- 1.6.6 Case study: Source Coding in Facsimile Transmission -- 1.7 Channel Models from the Information Theory Point of View -- 1.7.1 Discrete Memoryless Channel -- 1.7.2 Examples of Discrete Memoryless Channel Models -- 1.7.3 Example of a Binary Channel Model with Memory -- 1.8 Mutual Information -- 1.9 Properties of Mutual Information -- 1.10 Channel Capacity -- 1.11 Decision Process and its Rules -- 1.11.1 Idea of Decision Rule -- 1.11.2 Maximum a Posteriori Probability (MAP) Decision Rule -- 1.11.3 Maximum Likelihood Decision Rule -- 1.12 Differential Entropy and Average Amount of Information for Continuous Variables -- 1.13 Capacity of Band-Limited Channel with Additive White Gaussian Noise -- 1.14 Implication of AWGN Channel Capacity for Digital Transmission -- 1.15 Capacity of a Gaussian Channel with a Given Channel Characteristic -- 1.16 Capacity of a Flat Fading Channel -- 1.17 Capacity of a Multiple-Input Multiple-Output Channel -- Problems -- 2 Channel Coding -- 2.1 Idea of Channel Coding -- 2.2 Classification of Codes -- 2.3 Hard- and Soft-Decision Decoding -- 2.4 Coding Gain -- 2.5 Block Codes -- 2.5.1 Parity Check Matrix.

2.5.2 Generator Matrix -- 2.5.3 Syndrome -- 2.5.4 Hamming Codes -- 2.5.5 The Iterated Code -- 2.5.6 Polynomial Codes -- 2.5.7 Codeword Generation for the Polynomial Codes -- 2.5.8 Cyclic Codes -- 2.5.9 Parity Check Polynomial -- 2.5.10 Polynomial Codes Determined by Roots -- 2.5.11 Syndrome Polynomial -- 2.5.12 BCH Codes -- 2.5.13 Reed-Solomon Codes -- 2.5.14 Golay Codes -- 2.5.15 Maximum Length Codes -- 2.5.16 Code Modifications -- 2.6 Nonalgebraic Decoding for Block Codes -- 2.6.1 Meggitt Decoder -- 2.6.2 Majority Decoder -- 2.6.3 Information Set Decoding -- 2.7 Algebraic Decoding Methods for Cyclic Codes -- 2.8 Convolutional Codes and Their Description -- 2.8.1 Convolutional Code Description -- 2.8.2 Code Transfer Function -- 2.8.3 Convolutional Codes with Rate k/n -- 2.9 Convolutional Code Decoding -- 2.9.1 Viterbi Algorithm -- 2.9.2 Soft-Output Viterbi Algorithm (SOVA) -- 2.9.3 Error Probability Analysis for Convolutional Codes -- 2.10 Concatenated Coding -- 2.11 Case Studies: Two Examples of Concatenated Coding -- 2.11.1 Concatenated Coding in Deep Space Communications -- 2.11.2 Channel Coding in the DVB Satellite Segment -- 2.12 Turbo Codes -- 2.12.1 RSCC Code -- 2.12.2 Basic Turbo Code Encoder Scheme -- 2.12.3 RSCC Code MAP Decoding -- 2.12.4 Turbo Decoding Algorithm -- 2.13 LDPC Codes -- 2.13.1 Tanner Graph -- 2.13.2 Decoding of LDPC Codes -- 2.14 Error Detection Structures and Algorithms -- 2.15 Application of Error Detection - ARQ Schemes -- 2.16 Hybrid ARQ -- 2.16.1 Type-I Hybrid ARQ -- 2.16.2 Type-II Hybrid ARQ -- Problems -- 3 Digital Baseband Transmission -- 3.1 Introduction -- 3.2 Shaping of Elementary Signals -- 3.3 Selection of the Data Symbol Format -- 3.4 Optimal Synchronous Receiver -- 3.4.1 Optimal Reception of Binary Signals -- 3.4.2 Optimal Receiver for Multilevel Signals.

3.5 Error Probability at the Output of the Optimal Synchronous Receiver -- 3.6 Error Probability in the Optimal Receiver for M-PAM Signals -- 3.7 Case Study: Baseband Transmission in Basic Access ISDN Systems -- 3.8 Appendix: Power Spectral Density of Pulse Sequence -- Problems -- 4 Digital Modulations of the Sinusoidal Carrier -- 4.1 Introduction -- 4.2 Optimal Synchronous Receiver -- 4.3 Optimal Asynchronous Receiver -- 4.4 ASK Modulation -- 4.4.1 Synchronous Receiver for ASK-Modulated Signals -- 4.4.2 Asynchronous Reception of ASK-Modulated Signals -- 4.4.3 Error Probability on the Output of the Asynchronous ASK Receiver -- 4.5 FSK Modulation -- 4.5.1 Discussion of Synchronous Reception of FSK Signal -- 4.5.2 Asynchronous Reception of FSK Signals -- 4.5.3 Error probability for Asynchronous FSK Receiver -- 4.5.4 Suboptimal FSK Reception with a Frequency Discriminator -- 4.6 PSK Modulation -- 4.7 Linear Approach to Digital Modulations - M-PSK Modulation -- 4.8 Differential Phase Shift Keying (DPSK) -- 4.8.1 PSK Modulation with Differential Coding and Synchronous Detection -- 4.8.2 Asynchronous DPSK Receivers -- 4.8.3 Discussion on the Error Probability of the Optimal Asynchronous DPSK Receiver -- 4.8.4 Comparison of Binary Modulations -- 4.9 Digital Amplitude and Phase Modulations - QAM -- 4.9.1 General Remarks -- 4.9.2 Error Probability for QAM Synchronous Receiver -- 4.9.3 Multidimensional Modulations -- 4.10 Constant Envelope Modulations - Continuous Phase Modulation (CPM) -- 4.11 Trellis-Coded Modulations -- 4.11.1 Description of Trellis-Coded Signals -- 4.11.2 Decoding of the Trellis-Coded Signals -- 4.12 Multitone Modulations -- 4.13 Case Study: OFDM Transmission in DVB-T System -- 4.14 Influence of Nonlinearity on Signal Properties -- Problems -- 5 Properties of Communication Channels -- 5.1 Introduction -- 5.2 Baseband Equivalent Channel.

5.3 Telephone Channel -- 5.3.1 Basic Elements of the Telephone Network Structure -- 5.3.2 Telephone Channel Properties -- 5.4 Properties of a Subscriber Loop Channel -- 5.5 Line-of-Sight Radio Channel -- 5.6 Mobile Radio Channel -- 5.7 Examples of Other Radio Channels -- 5.7.1 Wireless Local Area Network (WLAN) Channel -- 5.7.2 Channel in Satellite Transmission -- 5.7.3 Short-Wave (HF) Channel -- 5.8 Basic Properties of Optical Fiber Channels -- 5.9 Conclusions -- Problems -- 6 Digital Transmission on Channels Introducing Intersymbol Interference -- 6.1 Introduction -- 6.2 Intersymbol Interference -- 6.3 Channel with ISI as a Finite State Machine -- 6.4 Classification of Equalizer Structures and Algorithms -- 6.5 Linear Equalizers -- 6.5.1 ZF Equalizers -- 6.5.2 MSE Equalizers -- 6.5.3 LS Equalizers -- 6.5.4 Choice of Reference Signal -- 6.5.5 Fast Linear Equalization using Periodic Test Signals -- 6.5.6 Symbol-Spaced versus Fractionally Spaced Equalizers -- 6.6 Decision Feedback Equalizer -- 6.7 Equalizers using MAP Symbol-by-Symbol Detection -- 6.8 Maximum Likelihood Equalizers -- 6.9 Examples of Suboptimum Sequential Receivers -- 6.10 Case Study: GSM Receiver -- 6.11 Equalizers for Trellis-Coded Modulations -- 6.12 Turbo Equalization -- 6.13 Blind Adaptive Equalization -- 6.14 Equalizers for MIMO Systems -- 6.14.1 MIMO MLSE Equalizer -- 6.14.2 Linear MIMO Receiver -- 6.14.3 Decision Feedback MIMO Equalizer -- 6.14.4 Equalization in the MIMO-OFDM System -- 6.15 Conclusions -- Problems -- 7 Spread Spectrum Systems -- 7.1 Introduction -- 7.2 Pseudorandom Sequence Generation -- 7.2.1 Maximum Length Sequences -- 7.2.2 Gold Sequences -- 7.2.3 Barker Sequences -- 7.3 Direct Sequence Spread Spectrum Systems -- 7.4 RAKE Receiver -- 7.5 Frequency-Hopping Spread Spectrum Systems.

7.6 Time-Hopping Spread Spectrum System with Pseudorandom Pulse Position Selection -- Problems -- 8 Synchronization in Digital Communication Systems -- 8.1 Introduction -- 8.2 Phase-locked loop for continuous signals -- 8.3 Phase-Locked Loop for Sampled Signals -- 8.4 Maximum Likelihood Carrier Phase Estimation -- 8.5 Practical Carrier Phase Synchronization Solutions -- 8.5.1 Carrier Phase Synchronization without Decision Feedback -- 8.5.2 Carrier Phase Synchronization using Decision Feedback -- 8.6 Timing Synchronization -- 8.6.1 Timing Recovery with Decision Feedback -- 8.6.2 Timing Recovery Circuits without Decision Feedback -- Problems -- 9 Multiple Access Techniques -- 9.1 Introduction -- 9.2 Frequency Division Multiple Access -- 9.3 Time Division Multiple Access -- 9.4 Code Division Multiple Access -- 9.4.1 Single-Carrier CDMA -- 9.4.2 Multi-Carrier CDMA -- 9.5 Orthogonal Frequency Division Multiple Access -- 9.6 Single-Carrier FDMA -- 9.7 Space Division Multiple Access -- 9.8 Case Study: Multiple Access Scheme in the 3GPP LTE Cellular System -- 9.9 Conclusions -- Problems -- Appendix -- Bibliography -- Index.
Abstract:
Combining theoretical knowledge and practical applications, this advanced-level textbook covers the most important aspects of contemporary digital communication systems. Introduction to Digital Communication Systems focuses on the rules of functioning digital communication system blocks, starting with the performance limits set by the information theory. Drawing on information relating to turbo codes and LDPC codes, the text presents the basic methods of error correction and detection, followed by baseband transmission methods, and single- and multi-carrier digital modulations. The basic properties of several physical communication channels used in digital communication systems are explained, showing the transmission and reception methods on channels suffering from intersymbol interference. The text also describes the most recent developments in the transmission techniques specific to wireless communications used both in wireline and wireless systems. The case studies are a unique feature of this book, illustrating elements of the theory developed in each chapter. Introduction to Digital Communication Systems provides a concise approach to digital communications, with practical examples and problems to supplement the text. There is also a companion website featuring an instructors' solutions manual and presentation slides to aid understanding. Offers theoretical and practical knowledge in a self-contained textbook on digital communications Explains basic rules of recent achievements in digital communication systems such as MIMO, turbo codes, LDPC codes, OFDMA, SC-FDMA Provides problems at the end of each chapter with an instructors' solutions manual on the companion website Includes case studies and representative communication system examples such as DVB-S, GSM, UMTS, 3GPP-LTE.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: