Cover image for Nonlinear Distortion in Wireless Systems : Modeling and Simulation with MATLAB.
Nonlinear Distortion in Wireless Systems : Modeling and Simulation with MATLAB.
Title:
Nonlinear Distortion in Wireless Systems : Modeling and Simulation with MATLAB.
Author:
Gharaibeh, Khaled M.
ISBN:
9781119961727
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (387 pages)
Series:
Wiley - IEEE ; v.32

Wiley - IEEE
Contents:
NONLINEAR DISTORTION IN WIRELESS SYSTEMS -- Contents -- Preface -- List of Abbreviations -- List of Figures -- List of Tables -- Acknowledgements -- 1 Introduction -- 1.1 Nonlinearity in Wireless Communication Systems -- 1.1.1 Power Amplifiers -- 1.1.2 Low-Noise Amplifiers (LNAs) -- 1.1.3 Mixers -- 1.2 Nonlinear Distortion in Wireless Systems -- 1.2.1 Adjacent-Channel Interference -- 1.2.2 Modulation Quality and Degradation of System Performance -- 1.2.3 Receiver Desensitization and Cross-Modulation -- 1.3 Modeling and Simulation of Nonlinear Systems -- 1.3.1 Modeling and Simulation in Engineering -- 1.3.2 Modeling and Simulation for Communication System Design -- 1.3.3 Behavioral Modeling of Nonlinear Systems -- 1.3.4 Simulation of Nonlinear Circuits -- 1.4 Organization of the Book -- 1.5 Summary -- 2 Wireless Communication Systems, Standards and Signal Models -- 2.1 Wireless System Architecture -- 2.1.1 RF Transmitter Architectures -- 2.1.2 Receiver Architecture -- 2.2 Digital Signal Processing in Wireless Systems -- 2.2.1 Digital Modulation -- 2.2.2 Pulse Shaping -- 2.2.3 Orthogonal Frequency Division Multiplexing (OFDM) -- 2.2.4 Spread Spectrum Modulation -- 2.3 Mobile System Standards -- 2.3.1 Second-Generation Mobile Systems -- 2.3.2 Third-Generation Mobile Systems -- 2.3.3 Fourth-Generation Mobile Systems -- 2.3.4 Summary -- 2.4 Wireless Network Standards -- 2.4.1 First-Generation Wireless LANs -- 2.4.2 Second-Generation Wireless LANs -- 2.4.3 Third-Generation Wireless Networks (WMANs) -- 2.5 Nonlinear Distortion in Different Wireless Standards -- 2.6 Summary -- 3 Modeling of Nonlinear Systems -- 3.1 Analytical Nonlinear Models -- 3.1.1 General Volterra Series Model -- 3.1.2 Wiener Model -- 3.1.3 Single-Frequency Volterra Models -- 3.1.4 The Parallel Cascade Model -- 3.1.5 Wiener-Hammerstein Models.

3.1.6 Multi-Input Single-Output (MISO) Volterra Model -- 3.1.7 The Polyspectral Model -- 3.1.8 Generalized Power Series -- 3.1.9 Memory Polynomials -- 3.1.10 Memoryless Models -- 3.1.11 Power-Series Model -- 3.1.12 The Limiter Family of Models -- 3.2 Empirical Nonlinear Models -- 3.2.1 The Three-Box Model -- 3.2.2 The Abuelma'ati Model -- 3.2.3 Saleh Model -- 3.2.4 Rapp Model -- 3.3 Parameter Extraction of Nonlinear Models from Measured Data -- 3.3.1 Polynomial Models -- 3.3.2 Three-Box Model -- 3.3.3 Volterra Series -- 3.4 Summary -- 4 Nonlinear Transformation of Deterministic Signals -- 4.1 Complex Baseband Analysis and Simulations -- 4.1.1 Complex Envelope of Modulated Signals -- 4.1.2 Baseband Equivalent of Linear System Impulse Response -- 4.2 Complex Baseband Analysis of Memoryless Nonlinear Systems -- 4.2.1 Power-Series Model -- 4.2.2 Limiter Model -- 4.3 Complex Baseband Analysis of Nonlinear Systems with Memory -- 4.3.1 Volterra Series -- 4.3.2 Single-Frequency Volterra Models -- 4.3.3 Wiener-Hammerstein Model -- 4.4 Complex Envelope Analysis with Multiple Bandpass Signals -- 4.4.1 Volterra Series -- 4.4.2 Single-Frequency Volterra Models -- 4.4.3 Wiener-Hammerstein Model -- 4.4.4 Multi-Input Single-Output Nonlinear Model -- 4.4.5 Memoryless Nonlinearity-Power-Series Model -- 4.5 Examples-Response of Power-Series Model to Multiple Signals -- 4.5.1 Single Tone -- 4.5.2 Two-Tone Signal -- 4.5.3 Single-Bandpass Signal -- 4.5.4 Two-Bandpass Signals -- 4.5.5 Single Tone and a Bandpass Signal -- 4.5.6 Multisines -- 4.5.7 Multisine Analysis Using the Generalized Power-Series Model -- 4.6 Summary -- 5 Nonlinear Transformation of Random Signals -- 5.1 Preliminaries -- 5.2 Linear Systems with Stochastic Inputs -- 5.2.1 White Noise -- 5.2.2 Gaussian Processes -- 5.3 Response of a Nonlinear System to a Random Input Signal -- 5.3.1 Power-Series Model.

5.3.2 Wiener-Hammerstein Models -- 5.4 Response of Nonlinear Systems to Gaussian Inputs -- 5.4.1 Limiter Model -- 5.4.2 Memoryless Power-Series Model -- 5.5 Response of Nonlinear Systems to Multiple Random Signals -- 5.5.1 Power-Series Model -- 5.5.2 Wiener-Hammerstein Model -- 5.6 Response of Nonlinear Systems to a Random Signal and a Sinusoid -- 5.7 Summary -- 6 Nonlinear Distortion -- 6.1 Identification of Nonlinear Distortion in Digital Wireless Systems -- 6.2 Orthogonalization of the Behavioral Model -- 6.2.1 Orthogonalization of the Volterra Series Model -- 6.2.2 Orthogonalization of Wiener Model -- 6.2.3 Orthogonalization of the Power-Series Model -- 6.3 Autocorrelation Function and Spectral Analysis of the Orthogonalized Model -- 6.3.1 Output Autocorrelation Function -- 6.3.2 Power Spectral Density -- 6.4 Relationship Between System Performance and Uncorrelated Distortion -- 6.5 Examples -- 6.5.1 Narrowband Gaussian Noise -- 6.5.2 Multisines with Deterministic Phases -- 6.5.3 Multisines with Random Phases -- 6.6 Measurement of Uncorrelated Distortion -- 6.7 Summary -- 7 Nonlinear System Figures of Merit -- 7.1 Analogue System Nonlinear Figures of Merit -- 7.1.1 Intermodulation Ratio -- 7.1.2 Intercept Points -- 7.1.3 1-dB Compression Point -- 7.2 Adjacent-Channel Power Ratio (ACPR) -- 7.3 Signal-to-Noise Ratio (SNR) -- 7.4 CDMA Waveform Quality Factor (p) -- 7.5 Error Vector Magnitude (EVM) -- 7.6 Co-Channel Power Ratio (CCPR) -- 7.7 Noise-to-Power Ratio (NPR) -- 7.7.1 NPR of Communication Signals -- 7.7.2 NBGN Model for Input Signal -- 7.8 Noise Figure in Nonlinear Systems -- 7.8.1 Nonlinear Noise Figure -- 7.8.2 NBGN Model for Input Signal and Noise -- 7.9 Summary -- 8 Communication System Models and Simulation in MATLABâ -- 8.1 Simulation of Communication Systems -- 8.1.1 Random Signal Generation -- 8.1.2 System Models.

8.1.3 Baseband versus Passband Simulations -- 8.2 Choosing the Sampling Rate in MATLABâ Simulations -- 8.3 Random Signal Generation in MATLABâ -- 8.3.1 White Gaussian Noise Generator -- 8.3.2 Random Matrices -- 8.3.3 Random Integer Matrices -- 8.4 Pulse-Shaping Filters -- 8.4.1 Raised Cosine Filters -- 8.4.2 Gaussian Filters -- 8.5 Error Detection and Correction -- 8.6 Digital Modulation in MATLABâ -- 8.6.1 Linear Modulation -- 8.6.2 Nonlinear Modulation -- 8.7 Channel Models in MATLABâ -- 8.8 Simulation of System Performance in MATLABâ -- 8.8.1 BER -- 8.8.2 Scatter Plots -- 8.8.3 Eye Diagrams -- 8.9 Generation of Communications Signals in MATLABâ -- 8.9.1 Narrowband Gaussian Noise -- 8.9.2 OFDM Signals -- 8.9.3 DS-SS Signals -- 8.9.4 Multisine Signals -- 8.10 Example -- 8.11 Random Signal Generation in Simulinkâ -- 8.11.1 Random Data Sources -- 8.11.2 Random Noise Generators -- 8.11.3 Sequence Generators -- 8.12 Digital Modulation in Simulinkâ -- 8.13 Simulation of System Performance in Simulinkâ -- 8.13.1 Example 1: Random Sources and Modulation -- 8.13.2 Example 2: CDMA Transmitter -- 8.13.3 Simulation of Wireless Standards in Simulinkâ -- 8.14 Summary -- 9 Simulation of Nonlinear Systems in MATLABâ -- 9.1 Generation of Nonlinearity in MATLABâ -- 9.1.1 Memoryless Nonlinearity -- 9.1.2 Nonlinearity with Memory -- 9.2 Fitting a Nonlinear Model to Measured Data -- 9.2.1 Fitting a Memoryless Polynomial Model to Measured Data -- 9.2.2 Fitting a Three-Box Model to Measured Data -- 9.2.3 Fitting a Memory Polynomial Model to a Simulated Nonlinearity -- 9.3 Autocorrelation and Spectrum Estimation -- 9.3.1 Estimation of the Autocorrelation Function -- 9.3.2 Plotting the Signal Spectrum -- 9.3.3 Power Measurements from a PSD -- 9.4 Spectrum of the Output of a Memoryless Nonlinearity -- 9.4.1 Single Channel -- 9.4.2 Two Channels.

9.5 Spectrum of the Output of a Nonlinearity with Memory -- 9.5.1 Three-Box Model -- 9.5.2 Memory Polynomial Model -- 9.6 Spectrum of Orthogonalized Nonlinear Model -- 9.7 Estimation of System Metrics from Simulated Spectra -- 9.7.1 Signal-to-Noise and Distortion Ratio (SNDR) -- 9.7.2 EVM -- 9.7.3 ACPR -- 9.8 Simulation of Probability of Error -- 9.9 Simulation of Noise-to-Power Ratio -- 9.10 Simulation of Nonlinear Noise Figure -- 9.11 Summary -- 10 Simulation of Nonlinear Systems in Simulinkâ -- 10.1 RF Impairments in Simulinkâ -- 10.1.1 Communications Blockset -- 10.1.2 The RF Blockset -- 10.2 Nonlinear Amplifier Mathematical Models in Simulinkâ -- 10.2.1 The "Memoryless Nonlinearity" Block-Communications Blockset -- 10.2.2 Cubic Polynomial Model -- 10.2.3 Hyperbolic Tangent Model -- 10.2.4 Saleh Model -- 10.2.5 Ghorbani Model -- 10.2.6 Rapp Model -- 10.2.7 Example -- 10.2.8 The "Amplifier" Block-The RF Blockset -- 10.3 Nonlinear Amplifier Physical Models in Simulinkâ -- 10.3.1 "General Amplifier" Block -- 10.3.2 "S-Parameter Amplifier" Block -- 10.4 Measurements of Distortion and System Metrics -- 10.4.1 Adjacent-Channel Distortion -- 10.4.2 In-Band Distortion -- 10.4.3 Signal-to-Noise and Distortion Ratio -- 10.4.4 Error Vector Magnitude -- 10.5 Example: Performance of Digital Modulation with Nonlinearity -- 10.6 Simulation of Noise-to-Power Ratio -- 10.7 Simulation of Noise Figure in Nonlinear Systems -- 10.8 Summary -- Appendix A Basics of Signal and System Analysis -- A.1 Signals -- A.2 Systems -- Appendix B Random Signal Analysis -- B.1 Random Variables -- B.1.1 Examples of Random Variables -- B.1.2 Functions of Random Variables -- B.1.3 Expectation -- B.1.4 Moments -- B.2 Two Random Variables -- B.2.1 Independence -- B.2.2 Joint Statistics -- B.3 Multiple Random Variables -- B.4 Complex Random Variables -- B.5 Gaussian Random Variables.

B.5.1 Single Gaussian Random Variable.
Abstract:
This book covers the principles of modeling and simulation of nonlinear distortion in wireless communication systems with MATLAB simulations and techniques In this book, the author describes the principles of modeling and simulation of nonlinear distortion in single and multichannel wireless communication systems using both deterministic and stochastic signals. Models and simulation methods of nonlinear amplifiers explain in detail how to analyze and evaluate the performance of data communication links under nonlinear amplification. The book addresses the analysis of nonlinear systems with stochastic inputs and establishes the performance metrics of communication systems with regard to nonlinearity. In addition, the author also discusses the problem of how to embed models of distortion in system-level simulators such as MATLAB and MATLAB Simulink and provides practical techniques that professionals can use on their own projects. Finally, the book explores simulation and programming issues and provides a comprehensive reference of simulation tools for nonlinearity in wireless communication systems. Key Features: Covers the theory, models and simulation tools needed for understanding nonlinearity and nonlinear distortion in wireless systems Presents simulation and modeling techniques for nonlinear distortion in wireless channels using MATLAB Uses random process theory to develop simulation tools for predicting nonlinear system performance with real-world wireless communication signals Focuses on simulation examples of real-world communication systems under nonlinearity Includes an accompanying website containing MATLAB code This book will be an invaluable reference for researchers, RF engineers, and communication system engineers working in the field. Graduate students and professors undertaking related courses will also find the book of

interest.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: