Cover image for Mobile Positioning and Tracking : From Conventional to Cooperative Techniques.
Mobile Positioning and Tracking : From Conventional to Cooperative Techniques.
Title:
Mobile Positioning and Tracking : From Conventional to Cooperative Techniques.
Author:
Figueiras , Joao.
ISBN:
9780470663028
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (300 pages)
Contents:
Contents -- About the Authors -- Preface -- Acknowledgements -- List of Abbreviations -- Notations -- 1 Introduction -- 1.1 Application Areas of Positioning (Chapter 2) -- 1.2 Basics of Wireless Communications for Positioning (Chapter 3) -- 1.3 Fundamentals of Positioning (Chapter 4) -- 1.4 Data Fusion and Filtering Techniques (Chapter 5) -- 1.5 Fundamentals of Tracking (Chapter 6) -- 1.6 Error Mitigation Techniques (Chapter 7) -- 1.7 Positioning Systems and Technologies (Chapter 8) -- 1.8 Cooperative Mobile Positioning (Chapter 9) -- 2 Application Areas of Positioning -- 2.1 Introduction -- 2.2 Localization Framework -- 2.3 Location-based Services -- 2.3.1 LBS ecosystem -- 2.3.2 Taxonomies -- 2.3.2.1 Application categories -- 2.4 Location-based Network Optimization -- 2.4.1 Radio network planning -- 2.4.2 Radio resource management -- 2.4.2.1 Beamforming -- 2.4.2.2 Power control -- 2.4.2.3 Packet scheduling -- 2.4.2.4 Handover -- 2.5 Conclusions -- 3 Basics of Wireless Communications for Positioning -- 3.1 Introduction -- 3.2 Radio Propagation -- 3.2.1 Path loss -- 3.2.2 Shadowing -- 3.2.3 Small-scale fading -- 3.2.3.1 Multipath fading -- 3.2.4 Radio propagation and mobile positioning -- 3.2.4.1 Measurements -- 3.2.4.2 Position estimation -- 3.2.4.3 NLOS positioning error mitigation -- 3.2.5 RSS-based positioning -- 3.3 Multiple-antenna Techniques -- 3.3.1 Spatial diversity -- 3.3.2 Spatial multiplexing -- 3.3.3 Gains obtained by exploiting the spatial domain -- 3.3.3.1 Array gain -- 3.3.3.2 Diversity gain -- 3.3.3.3 Multiplexing gain -- 3.3.3.4 Interference reduction -- 3.3.4 MIMO and mobile positioning -- 3.4 Modulation and Multiple-access Techniques -- 3.4.1 Modulation techniques -- 3.4.1.1 OFDM -- 3.4.1.2 Spread spectrum -- 3.4.2 Multiple-access techniques -- 3.4.2.1 TDMA -- 3.4.2.2 FDMA/OFDMA -- 3.4.2.3 CDMA -- 3.4.2.4 SDMA.

3.4.2.5 CSMA/CA -- 3.4.3 OFDMA and mobile positioning -- 3.5 Radio Resource Management and Mobile Positioning -- 3.5.1 Handoff, channel reuse and interference adaptation -- 3.5.1.1 Handoff prioritization -- 3.5.1.2 Channel reuse and interference adaptation -- 3.5.1.3 Predictive channel reservation -- 3.5.2 Power control -- 3.6 Cooperative Communications -- 3.6.1 RSS-based cooperative positioning -- 3.7 Cognitive Radio and Mobile Positioning -- 3.8 Conclusions -- 4 Fundamentals of Positioning -- 4.1 Introduction -- 4.2 Classification of Positioning Infrastructures -- 4.2.1 Positioning-system topology -- 4.2.2 Physical coverage range -- 4.2.3 Integration of positioning solutions -- 4.3 Types of Measurements and Methods for their Estimation -- 4.3.1 Cell ID -- 4.3.2 Signal strength -- 4.3.3 Time of arrival -- 4.3.4 Time difference of arrival -- 4.3.5 Angle of arrival -- 4.3.6 Personal-information identification -- 4.4 Positioning Techniques -- 4.4.1 Proximity sensing -- 4.4.1.1 Physical contact -- 4.4.1.2 Identity methods -- 4.4.1.3 Macropositioning -- 4.4.2 Triangulation -- 4.4.2.1 Lateration -- 4.4.2.2 Hyperbolic localization -- 4.4.2.3 Angulation -- 4.4.3 Fingerprinting -- 4.4.3.1 Calibration phase for database creation -- 4.4.3.2 Image/video approaches -- 4.4.3.3 Collaborative approach for database maintenance -- 4.4.4 Dead reckoning -- 4.4.5 Hybrid approaches -- 4.4.5.1 Hybrid angulation and lateration -- 4.4.5.2 Hybrid angulation and hyperbolic localization -- 4.5 Error Sources in Positioning -- 4.5.1 Propagation -- 4.5.1.1 Non-line-of-sight -- 4.5.1.2 Multipath fading -- 4.5.1.3 Shadowing -- 4.5.1.4 Body shadowing -- 4.5.1.5 Interference -- 4.5.1.6 The ionosphere -- 4.5.2 Geometry -- 4.5.3 Equipment and technology -- 4.6 Metrics of Location Accuracy -- 4.6.1 Circular error probability -- 4.6.2 Dilution of precision.

4.6.3 Cramér-Rao lower bound (CRLB) -- 4.7 Conclusions -- 5 Data Fusion and Filtering Techniques -- 5.1 Introduction -- 5.2 Least-squares Methods -- 5.2.1 Linear least squares -- 5.2.2 Recursive least squares -- 5.2.3 Weighted nonlinear least squares -- 5.2.3.1 Example of application -- 5.2.4 The absolute/local-minimum problem -- 5.3 Bayesian Filtering -- 5.3.1 The Kalman filter -- 5.3.1.1 Extended Kalman filter -- 5.3.1.2 Unscented Kalman filter -- 5.3.1.3 Convergence issues -- 5.3.2 The particle filter -- 5.3.3 Grid-based methods -- 5.4 Estimating Model Parameters and Biases in Observations -- 5.4.1 Precalibration -- 5.4.2 Joint parameter and state estimation -- 5.5 Alternative Approaches -- 5.5.1 Fingerprinting -- 5.5.2 Time series data -- 5.5.2.1 Single exponential smoothing -- 5.5.2.2 The double exponential smoother -- 5.6 Conclusions -- 6 Fundamentals of Tracking -- 6.1 Introduction -- 6.2 Impact of User Mobility on Positioning -- 6.2.1 Localizing static devices -- 6.2.2 Added complexity in tracking -- 6.2.3 Additional knowledge in cooperative environments -- 6.3 Mobility Models -- 6.3.1 Conventional models -- 6.3.2 Models based on stochastic processes -- 6.3.2.1 Brownian-motion model -- 6.3.2.2 Random walk model -- 6.3.2.3 Waypoint random walk -- 6.3.2.4 Gauss-Markov model -- 6.3.2.5 Models based on Markov chains -- 6.3.3 Geographical-restriction models -- 6.3.3.1 Pathway mobility model -- 6.3.4 Group mobility models -- 6.3.4.1 Reference point group mobility model -- 6.3.4.2 Correlation group mobility model -- 6.3.5 Social-based models -- 6.3.5.1 Model based on a sociability factor -- 6.4 Tracking Moving Devices -- 6.4.1 Mitigating obstructions in the propagation conditions -- 6.4.2 Tracking nonmaneuvering targets -- 6.4.3 Tracking maneuvering targets -- 6.4.3.1 Process adaptation using maneuver detection -- 6.4.3.2 Multiple-model approaches.

6.4.4 Learning position and trajectory patterns -- 6.4.4.1 The expectation maximization algorithm -- 6.4.4.2 The k-means algorithm -- 6.5 Conclusions -- 7 Error Mitigation Techniques -- 7.1 Introduction -- 7.2 System Model -- 7.2.1 Maximum-likelihood algorithm for LOS scenarios -- 7.2.2 Cramér-Rao lower bounds for LOS scenarios -- 7.3 NLOS Scenarios: Fundamental Limits and ML Solutions -- 7.3.1 ML-based algorithms -- 7.3.2 Cramér-Rao lower bound -- 7.4 Least-squares Techniques for NLOS Localization -- 7.4.1 Weighted least squares -- 7.4.2 Residual-weighting algorithm -- 7.5 Constraint-based Techniques for NLOS Localization -- 7.5.1 Constrained LS algorithm and quadratic programming -- 7.5.2 Linear programming -- 7.5.3 Geometry-constrained location estimation -- 7.5.4 Interior-point optimization -- 7.6 Robust Estimators for NLOS Localization -- 7.6.1 Huber M-estimator -- 7.6.2 Least median squares -- 7.6.3 Other robust estimation options -- 7.7 Identify and Discard Techniques for NLOS Localization -- 7.7.1 Residual test algorithm -- 7.8 Conclusions -- 8 Positioning Systems and Technologies -- 8.1 Introduction -- 8.2 Satellite Positioning -- 8.2.1 Overview -- 8.2.2 Basic principles -- 8.2.2.1 Mathematical background -- 8.2.3 Satellite positioning systems -- 8.2.3.1 Introductory remarks -- 8.2.3.2 The Global Positioning System -- 8.2.3.3 Augmentation systems -- 8.2.3.4 GPS III and GALILEO -- 8.2.4 Accuracy and reliability -- 8.2.5 Drawbacks when applied to mobile positioning -- 8.3 Cellular Positioning -- 8.3.1 Overview -- 8.3.2 GSM -- 8.3.2.1 Cell ID -- 8.3.2.2 RSSI -- 8.3.2.3 Mobile-assisted TOA -- 8.3.2.4 Accuracy and reliability -- 8.3.3 UMTS -- 8.3.3.1 3GPP standardization -- 8.3.3.2 OTDOA-IPDL -- 8.3.3.3 U-TDOA -- 8.3.3.4 A-GNSS-based positioning -- 8.3.4 Emergency applications in cellular networks.

8.3.5 Drawbacks when applied to mobile positioning -- 8.4 Wireless Local/Personal Area Network Positioning -- 8.4.1 Solutions on top of wireless local networks -- 8.4.1.1 UWB -- 8.4.1.2 Bluetooth -- 8.4.1.3 WLAN (Wi-Fi) -- 8.4.2 Dedicated solutions -- 8.4.2.1 RFID -- 8.4.2.2 Infrared -- 8.4.2.3 Ultrasound -- 8.5 Ad hoc Positioning -- 8.6 Hybrid Positioning -- 8.6.1 Heterogeneous positioning -- 8.6.2 Cellular and WLAN -- 8.6.3 Assisted GPS -- 8.7 Conclusions -- 9 Cooperative Mobile Positioning -- 9.1 Introduction -- 9.2 Cooperative Localization -- 9.2.1 Robot networks -- 9.2.2 Wireless sensor networks -- 9.2.2.1 Clustering -- 9.2.3 Wireless mobile networks -- 9.3 Cooperative Data Fusion and Filtering Techniques -- 9.3.1 Coop-WNLLS: Cooperative weighted nonlinear least squares -- 9.3.1.1 Example of application -- 9.3.2 Coop-EKF: Cooperative extended Kalman filter -- 9.3.2.1 Example of application -- 9.4 COMET: A Cooperative Mobile Positioning System -- 9.4.1 System architecture -- 9.4.2 Data fusion methods -- 9.4.2.1 1L-DF: One-level data fusion -- 9.4.2.2 2L-DF: Two-level data fusion -- 9.4.3 Performance evaluation -- 9.4.3.1 Simulation models -- 9.4.3.2 Simulation results -- 9.5 Conclusions -- References -- Index.
Abstract:
This book presents the most recent state of the art in mobile positioning and tracking techniques. Current trends in mobile services envisage location-based networking as a major strong stimulator for the development of novel solutions for obtaining positioning information in wireless networks. This book discusses mobile positioning solutions applied on top of current wireless communication networks. In addition, the authors introduce advanced and novel topics such as localization in heterogeneous and cooperative networks, providing a unified treatment of the topic for researchers and industry professionals alike. Furthermore, the book focuses on application areas of positioning, basics of wireless communications for positioning, data fusion and filtering techniques, fundamentals of tracking, error mitigation techniques, positioning systems and technologies, and cooperative mobile positioning systems. Key Features: Covers the state of the art of satellite- and terrestrial-based positioning systems, spanning from outdoor to indoor environments and from wide area networks to short-range networks Discusses a whole range of topics related to mobile positioning: from fundamentals of positioning to the description of a wide spectrum of mobility models for tracking, from details on data fusion and filtering techniques to error mitigation techniques (including aspects of signal processing) Provides a solid bridge between research and industry envisaging a potential implementation of the presented solutions Fills the gap between positioning and communication systems, showing how features of communication systems can be used for positioning purposes and how the retrieved location information can be used to enhance the performance of wireless networks. Includes an accompanying website This book will be a valuable guide for advanced

students studying related courses. Professionals and practitioners in the field of positioning and mobile technologies, and software and service developers will also find this book of interest. www.wiley.com/go/figueiras_mobile.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: