Cover image for Field emission electron source based on silicon carbide nanopillars
Field emission electron source based on silicon carbide nanopillars
Title:
Field emission electron source based on silicon carbide nanopillars
Author:
Yeşilpınar, Damla, author.
Physical Description:
xiii, 81 leaves: color illustraltions.+ 1 computer laser optical disc.
Abstract:
In this thesis work, I studied the fabrication and the field emission characteristics of SiC nanopillar based electron field emitters. The first objective of this thesis was to fabricate a large area nanopillar array on bulk 6H-SiC substrate. Accordingly, a nanosphere assisted technique was developed to create a conventional Cr/Ni hard mask to acquire desired etch mask pattern on the C-terminated face of 6H-SiC. The nanopillars were then fabricated by ICP-RIE. Two sets of nanopillars with different aspect ratios and geometries were fabricated for two different ICP-RIE durations. 1 min long etch resulted in nanopillar arrays with blunt tip apex and an aspect ratio of 3.4, where 2 min long etch produced nanopillar arrays with an aspect ratio of 4.9 and a sharp tip apex with an estimated radius of curvature of about 18 nm. As the second objective; the electron field emission characteristics of the produced nanopillars with two different aspect ratios and geometries were investigated and the obtained results were compared with each other. We found that the nanopillars with sharp tip apex produced field emission currents up to 240 μA/cm2 under 17.4 V/μm applied electric field, as the nanopillars with blunt tip apex produced an emission current of 70 μA/cm2. The threshold electric fields were found to be 9.1 V/μm and 7.2 V/μm for the nanopillars with blunt and sharp tip apex, respectively. Time dependent stability measurements yielded stable electron emission without any abrupt change in the respective current levels of both samples.
Added Author:
Added Uniform Title:
Thesis (Master)--İzmir Institute of Technology: Materials Science and Engineering.

İzmir Institute of Technology: Materials Science and Engineering--Thesis (Master).
Electronic Access:
Access to Electronic Versiyon.
Holds: Copies: