Cover image for Boundary Element Methods in Engineering and Sciences.
Boundary Element Methods in Engineering and Sciences.
Title:
Boundary Element Methods in Engineering and Sciences.
Author:
Aliabadi, M. H.
ISBN:
9781848165809
Personal Author:
Physical Description:
1 online resource (450 pages)
Series:
Computational and Experimental Methods in Structures
Contents:
CONTENTS -- PREFACE -- Chapter 1 THE BOUNDARY ELEMENT METHOD FOR GEOMETRICALLY NON-LINEAR ANALYSES OF PLATES AND SHELLS -- 1.1. Introduction -- 1.2. Basic Definitions of Shear Deformable Plates and Shallow Shells -- 1.2.1. Forces and moments for stress resultants and stress couples -- 1.2.2. Linear kinematic equations -- 1.2.3. Linear constitutive equations -- 1.2.4. Linear equilibrium equations -- 1.3. Large Deflection Theory -- 1.4. Integral Representations -- 1.4.1. Rotations and out-of-plane integral representations -- 1.4.2. In-plane integral representations -- 1.5. Boundary Integral Equations -- 1.6. Stresses in Shear Deformable Plates/Shallow Shells -- 1.6.1. Internal stress resultants -- 1.6.2. Boundary stress resultants: indirect approach -- 1.6.3. Boundary stress resultants: direct approach -- 1.7. Non-linear Terms -- 1.7.1. Boundary non-linear terms -- 1.7.2. Domain non-linear terms -- 1.7.3. Derivatives of non-linear terms -- 1.8. Transformation of Domain Integrals (The Dual Reciprocity Method) -- 1.9. Numerical Implementation -- 1.9.1. Discretization -- 1.9.2. Treatment of the integrals -- 1.10. Solution of the Non-linear Integral Equations for Shallow Shells and Plates -- 1.10.1. System of equations -- 1.10.2. Load increment technique -- 1.11. Numerical Examples -- 1.11.1. Clamped circular plate subjected to uniform load q0 -- 1.11.2. Simply supported square plate subjected to uniform load q0 -- 1.11.3. Clamped shallow cylindrical shells: uniformly loaded -- 1.11.4. Simply supported shallow spherical shells: uniformly loaded -- 1.12. Conclusions -- References -- Chapter 2 TIME-DOMAIN BEM TECHNIQUES -- 2.1. Introduction -- 2.2. Standard TD-BEM Integral Equations -- 2.2.1. Potential integral equation -- 2.2.2. Numerical solution -- 2.2.3. Velocity integral equation -- 2.3. Step-by-Step Procedure: SSTD-BEM Formulation.

2.3.1. Examples -- 2.3.1.1. One-dimensional rod under a Heaviside-type forcing function -- 2.3.1.2. One-dimensional rod under sinusoidal initial conditions -- 2.4. D-BEM Formulation -- 2.4.1. Numerical procedure -- 2.4.1.1. Time marching with the Houbolt method -- 2.4.1.2. Time marching with the Newmark method -- 2.4.2. Examples -- 2.4.2.1. Square Membrane under prescribed initial displacement over the entire domain -- 2.4.2.2. Square membrane under prescribed initial velocity over part of the domain -- 2.5. Conclusions and Outlook -- References -- Chapter 3 THE BOUNDARY ELEMENT METHOD FOR THE FRACTURE ANALYSIS OF THE GENERAL PIEZOELECTRIC SOLIDS -- 3.1. Introduction -- 3.2. Basic Equations in Piezoelectricity -- 3.2.1. Piezoelectric equations in 3-D -- 3.2.2. Piezoelectric equations in 2-D -- 3.2.3. Lekhnitskii formalism for 2-D piezoelectricity -- 3.3. Physical Interpretation of Extended Somigliana's Identity in 2-D Piezoelectricity -- 3.4. Direct Formulation of the BEM in 2-D -- 3.4.1. Fundamental solutions for 2-D piezoelectricity -- 3.4.2. Implementation -- 3.5. Numerical Green's Functions for Crack Modeling -- 3.6. Crack Surface Electric BCs and Solution Algorithms -- 3.6.1. Impermeable and permeable cracks -- 3.6.2. Semipermeable cracks -- 3.7. Material Constants -- 3.8. Numerical Results -- 3.8.1. Upper and lower bound analysis -- 3.8.2. Semipermeable cracks -- 3.8.2.1. Single crack in an infinite body -- 3.8.2.2. Single crack in a finite body -- 3.8.2.3. Three parallel cracks -- 3.9. Concluding Remarks -- References -- Chapter 4 BOUNDARY INTEGRAL ANALYSIS FOR THREE-DIMENSIONAL EXPONENTIALLY GRADED ELASTICITY -- 4.1. Introduction -- 4.2. Graded Green's Function U -- 4.3. Traction Fundamental Solution T -- 4.4. Boundary Element Method -- 4.5. Numerical Examples -- 4.5.1. Pressurized thick-walled tube.

4.5.2. Spherical cavity in a cube subjected to uniaxial tension -- 4.6. Analytic Expansion -- 4.7. Conclusions -- Acknowledgements -- References -- Chapter 5 FAST HIERARCHICAL BOUNDARY ELEMENT METHOD FOR LARGE-SCALE 3-D ELASTIC PROBLEMS -- 5.1. Introduction -- 5.2. The 3-D Dual Boundary Element Method -- 5.2.1. DBEM systems of equations -- 5.3. Hierarchical Dual Boundary Element Method -- 5.3.1. Boundary subdivision and cluster tree -- 5.3.2. Block tree and admissibility condition -- 5.3.3. Low rank blocks and ACA algorithm -- 5.3.4. Block recompression and tree coarsening -- 5.3.5. Hierarchical arithmetic -- 5.3.5.1. Addition -- 5.3.5.2. Multiplication -- 5.3.5.3. LU decomposition -- 5.3.5.4. Inversion -- 5.3.6. System solution -- 5.3.7. Some details about code implementation -- 5.4. Numerical Experiments -- 5.4.1. Uncracked isotropic elastic bracket -- 5.4.2. Embedded crack in isotropic bar -- 5.4.3. Embedded crack in anisotropic bar -- 5.5. Conclusions -- Appendix A. Fundamental Solutions -- Appendix B. Numerical Scheme -- References -- Chapter 6 MODELLING OF PLATES AND SHALLOW SHELLS BY MESHLESS LOCAL INTEGRAL EQUATION METHOD -- 6.1. Introduction -- 6.2. The MLS Approximation -- 6.3. Analyses of Orthotropic FGM Plates Under Mechanical and Thermal Load -- 6.3.1. Meshless local integral equations for a Reissner-Mindlin plate -- 6.3.2. Meshless local integral equations for heat conduction problems in plates -- 6.4. Analyses of Orthotropic FGM Shells Under Mechanical and Thermal Load -- 6.5. Numerical Examples -- 6.5.1. Plates -- 6.5.2. Shells -- 6.6. Conclusions -- References -- Chapter 7 BOUNDARY ELEMENT TECHNIQUE FOR SLOW VISCOUS FLOWS ABOUT PARTICLES -- 7.1. Introduction -- 7.2. Stokes Equations. First Properties and Simple Solutions -- 7.2.1. Assumptions. Navier-Stokes equations. Reynolds number and Stokes approximation.

7.2.2. First properties and noticeable solutions -- 7.3. General Solution. Singularities. Singularity Method and Illustrating Examples -- 7.3.1. General form of a steady Stokes flow -- 7.3.2. Examples of singularity solutions in an unbounded domain -- 7.3.2.1. Potential velocity fields -- 7.3.2.2. Rotational velocity fields -- 7.3.3. Singularity method and examples -- 7.3.4. General properties -- 7.3.4.1. Reciprocal identity -- 7.3.4.2. Energy dissipation and unicity of the solution -- 7.3.4.3. Basic application -- 7.4. Integral Representations for the Pressure and Velocity Fields. Resulting Boundary Integral Equations -- 7.4.1. Green solution -- 7.4.1.1. Free-space Green tensor -- 7.4.1.2. Case of a bounded fluid domain -- 7.4.2. General integral representation for the velocity field -- 7.4.3. Integral representation for the pressure field -- 7.4.4. Relevant boundary-integral equations -- 7.4.4.1. Basic steps and key preliminary results -- 7.4.4.2. Relevant general boundary integral equations -- 7.4.4.3. Case of a N−bubble cluster -- 7.4.4.4. Case of a N−particle cluster involving at least a solid particle -- 7.5. Numerical Implementation -- 7.5.1. Mesh and boundary-elements -- 7.5.2. Associated functions -- 7.5.3. Computation of regular and weakly singular boundary integrals: advocated scheme -- 7.5.4. Computation of regular and weakly singular boundary integrals: accuracy issues -- 7.5.5. Implementation for a N−particle cluster -- 7.6. Illustrating Comparisons and Results -- 7.6.1. Sedimentation of a solid spheroid near a plane wall -- 7.6.2. Solid particle in a spherical cavity -- 7.7. Concluding Remarks -- References -- Chapter 8 BIT FOR FREE SURFACE FLOWS -- 8.1. The Nature of Free Surface Flows -- 8.2. Mathematical Formulation -- 8.2.1. Three-dimensional BIT -- 8.2.2. Two-dimensional BIT -- 8.2.3. Open, periodic geometry.

8.2.4. Linear stability analysis -- 8.3. Numerical Approximation -- 8.3.1. Numerical stability -- 8.4. Applications with a Single Surface -- 8.4.1. Waves on deep water -- 8.4.2. Rising bubbles -- 8.5. Applications with Two Surfaces -- 8.5.1. Rayleigh-Taylor instability of a liquid layer of finite thickness -- 8.5.2. Water waves in finite depth -- 8.6. Some Challenges and Improvements -- Acknowledgments -- References -- Chapter 9 SIMULATION OF CAVITATING AND FREE SURFACE FLOWS USING BEM -- 9.1. Introduction -- 9.2. 2-D Hydrofoil -- 9.2.1. Formulation -- 9.2.2. The boundary element method -- 9.2.3. Cavity extent for given cavitation number -- 9.2.4. Effects of flow unsteadiness -- 9.2.5. Effects of viscosity -- 9.2.6. The cavity detachment point -- 9.3. 3-D Hydrofoil -- 9.3.1. The green's third identity -- 9.3.2. The dynamic boundary condition -- 9.3.3. The cavity thickness distribution -- 9.3.4. The cavity planform -- 9.3.5. Numerical aspects -- 9.3.6. The split panel technique -- 9.3.7. Multiplicity of solutions -- 9.4. Propellers -- 9.4.1. Super-cavitating propellers -- 9.5. Comparisons with Experiments -- 9.6. Surface-Piercing Flows -- 9.6.1. Surface-piercing propellers -- 9.6.2. Surface-piercing 2-D hydrofoils: entry stage -- 9.6.2.1. Formulation -- 9.6.2.2. Algorithm of marching free-surface in time -- 9.6.2.3. Results -- 9.7. Concluding Remarks -- 9.8. Acknowledgements -- References -- Chapter 10 CONDITION NUMBERS AND LOCAL ERRORS IN THE BOUNDARY ELEMENT METHOD -- 10.1. Introduction -- 10.2. BEM Formulation for Potential Problems -- 10.3. Local Errors in Potential Problems -- 10.3.1. Numerical examples -- 10.3.2. A detailed study of local errors -- 10.4. Large Condition Numbers -- 10.5. Condition Numbers in Potential Problems -- 10.5.1. Logarithmic capacity -- 10.5.2. Dirichlet problem -- 10.5.3. Mixed problem.

10.6. Condition Numbers in Flow Problems.
Abstract:
The boundary element method (BEM), also known as the boundary integral equation method (BIEM), is a modern numerical technique which has enjoyed increasing popularity over the past two decades. It is now an established alternative to traditional computational methods of engineering analysis. The main advantage of the BEM is its unique ability to provide a complete solution in terms of boundary values only, with substantial savings in modeling effort. This book is designed to provide readers with a comprehensive and up-to-date account of the method and its application to problems in engineering and science. Each chapter provides a brief description of historical development, followed by basic theory, derivation and examples.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: