Cover image for Fracture and Life.
Fracture and Life.
Title:
Fracture and Life.
Author:
Cotterell, Brian.
ISBN:
9781848162839
Personal Author:
Physical Description:
1 online resource (500 pages)
Contents:
Contents -- Foreword -- Preface -- Colour Plates -- 1. Introduction and Basic Solid Mechanics -- 1.1 What Holds a Solid Together? -- 1.1.1 Surface energy -- 1.1.2 Interatomic force -- 1.2 Stress and Strain -- 1.2.1 Principal stresses and Mohr's stress circles -- 1.3 Elastic Deformation -- 1.3.1 Elastic strain energy -- 1.4 Plastic Deformation and Hardness -- 1.5 Strength Resilience and Fracture -- 1.5.1 Theoretical ideal strength -- 1.5.2 Fracture of real materials -- 1.5.2.1 Elastic fracture -- 1.5.2.2 Plastic fracture -- 1.5.2.3 Size effect -- 1.5.2.4 Toughness and the characteristic length of a material -- 1.6 Simple Fracture Experiments -- 1.6.1 Paper tearing -- 1.6.2 The sardine can problem -- 1.6.3 Divergent concertinas tears -- 1.6.4 Wiggly cuts or the Kit Kat® problem -- 1.7 Concluding Remarks -- 1.8 Notes -- 2. Evolution of the Earth -- 2.1 Plate Tectonics -- 2.2 Folds and Faults -- 2.3 Earthquakes -- 2.3.1 Seismology -- 2.3.2 Earthquake hazards and prediction -- 2.4 Rock Fracture -- 2.4.1 The effect of confining pressure on the compressive strength -- 2.4.2 Modelling the compression fracture of rocks -- 2.5 Ice -- 2.5.1 Glaciers -- 2.5.2 Icebergs -- 2.6 Concluding Remarks -- 2.7 Notes -- 3. Evolution of Life -- 3.1 Biocomposites -- 3.1.1 Stiffness -- 3.1.2 Toughness -- 3.2 Plant Tissues -- 3.2.1 The fracture toughness of plant tissue -- 3.3 Animal Tissues -- 3.3.1 Organic tissues -- 3.3.1.1 Chitin fibres and cuticle -- 3.3.1.2 Silk -- 3.3.1.3 Tendon -- 3.3.1.4 Skin -- 3.3.1.5 Keratin -- 3.3.2 Bioceramic tissues -- 3.3.2.1 Mollusc shell structures and nacre -- 3.3.2.2 Bone -- 3.3.2.3 Teeth -- 3.4 Concluding Remarks -- 3.5 Notes -- 4. Human Evolution and Stone Tools -- 4.1 Modern Discovery of Stone Tools -- 4.1.1 The Brandon flintknappers -- 4.1.2 The archaeological importance of stone tools -- 4.2 Stone Tool Types and Human Evolution.

4.3 Stone Materials -- 4.3.1 Materials for flaked tools -- 4.3.1.1 Heat treatment of stone -- 4.3.2 Materials for ground stone tools -- 4.4 Flaked Stone Tools -- 4.4.1 Initiation phase -- 4.4.2 Propagation phase -- 4.4.3 Termination phase -- 4.4.4 Surface markings -- 4.5 Ground Stone Tools -- 4.5.1 The mechanics of abrasion -- 4.6 Use-wear on Stone Tools -- 4.7 Concluding Remarks -- 4.8 Notes -- 5. Building in Stone and Concrete in the Ancient World -- 5.1 Spanning Openings -- 5.1.1 Architraves -- 5.1.2 Arches -- 5.1.3 Vaults and domes -- 5.2 Ancient Egyptian Masonry -- 5.2.1 Building stone -- 5.2.1.1 Properties of building stone -- 5.2.2 Tools for extraction and dressing of stone -- 5.2.3 Method of quarrying stone -- 5.2.3.1 Quarrying soft stone -- 5.2.3.2 The use of wooden wedges expanded by water -- 5.2.3.3 Quarrying hard stone -- 5.2.3.4 Sawing and drilling stone -- 5.2.4 Building in stone -- 5.3 Greek Masonry -- 5.4 Roman Masonry and Concrete -- 5.5 Concluding Remarks -- 5.6 Notes -- 6. From the Renaissance to the Industrial Revolution -- 6.1 Leonardo da Vinci (1452-1519) -- 6.2 Galileo Galilei (1564-1642) -- 6.3 The Royal Society and Prince Rupert's Drops -- 6.4 Edme Mariotte (ca. 1620-1684) -- 6.5 Dome of St Peter's and Giovanni Poleni (1683-1761) -- 6.6 The Liberty Bell -- 6.7 Charles-Augustin de Coulomb (1736-1806) -- 6.8 Mechanical Testing in the Eighteenth-Century -- 6.9 Concluding Remarks -- 6.10 Notes -- 7. From the Industrial Revolution to 1900 -- 7.1 Emerson's Paradox -- 7.2 Wrought Iron and Brittle Fracture -- 7.3 Steam Power and Bursting Boilers -- 7.4 Railways and Fatigue -- 7.4.1 The pragmatic approach to fatigue -- 7.4.2 August Wöhler (1819-1914) ) and the systematic study of fatigue -- 7.5 The Coming of the Steel Age and Brittle Fracture -- 7.5.1 Brittle fracture opinions and tests.

7.5.2 Major brittle fractures in the nineteenth-century -- 7.5.3 Notch impact testing -- 7.6 Strength Theories in the Nineteenth-Century -- 7.7 Concluding Remarks -- 7.8 Notes -- 8. The First Half of the Twentieth-Century -- 8.1 The Brittle Fracture of Steel -- 8.1.1 Notch impact tests -- 8.1.2 Understanding notch brittleness and the ductile-brittle transition -- 8.1.3 Brittle fracture of riveted steel structures -- 8.1.4 Brittle fracture of welded steel structures -- 8.1.5 Brittle fracture tests during the 1940s -- 8.2 The Beginning of Analytical Fracture Mechanics -- 8.2.1 Wieghardt's pioneering work -- 8.2.2 Inglis and the stresses due to cracks and sharp corners -- 8.2.3 Griffith and the foundations of fracture mechanics -- 8.2.4 Defects and the strength of brittle solids -- 8.2.5 Obreimoff, stable fracture and its reversibility -- 8.2.6 The extension of Griffith's theory to metals -- 8.3 The Statistics of Fracture -- 8.4 Fatigue of Materials -- 8.4.1 Microstructural aspects of fatigue -- 8.4.2 Effect of frequency of stress cycling and corrosion fatigue -- 8.4.3 Cumulative damage -- 8.4.4 The effect of notches and size effect -- 8.4.5 Component fatigue testing -- 8.5 Concluding Remarks -- 8.6 Notes -- 9. Fundamentals of Fracture and Metal Fracture from 1950 to the Present -- 9.1 Linear Elastic Fracture Mechanics (LEFM) -- 9.1.1 Fracture of high strength metals -- 9.1.2 The fracture process zone (FPZ) -- 9.1.3 Crack paths in low velocity elastic fractures -- 9.1.4 Dynamic crack propagation -- 9.1.4.1 Analysis of dynamic fracture -- 9.2 The Brittle Fracture of Steel -- 9.2.1 Theory of cleavage initiation and propagation -- 9.2.2 Propagation tests -- 9.2.3 Crack arrest tests -- 9.2.4 Welded wide plate tests -- 9.3 Developments in Steel Making -- 9.4 Elasto-Plastic Fracture Mechanics (EPFM) -- 9.4.1 The crack tip opening displacement (CTOD) concept.

9.4.2 The crack tip opening angle (CTOA) -- 9.4.3 The J-integral and EPFM -- 9.4.4 Plasticity and fracture - work and energy -- 9.4.5 The essential work of fracture concept -- 9.4.6 Modelling the FPZ in elasto-plastic fracture -- 9.5 Fatigue of Metals -- 9.5.1 Low-cycle fatigue -- 9.5.2 Crack propagation -- 9.5.3 Short fatigue cracks -- 9.5.4 Multiple site fatigue -- 9.6 Concluding Remarks -- 9.7 Notes -- 10. The Diversity of Materials and Their Fracture Behaviour -- 10.1 Ceramics -- 10.1.1 Processing -- 10.1.2 Mechanical properties -- 10.1.3 Fracture -- 10.1.4 Transformation toughened ceramics -- 10.1.5 Cyclic and static fatigue -- 10.1.6 Refractories and thermal shock -- 10.2 Cement and Concrete -- 10.2.1 Fracture mechanics of cementitious materials -- 10.2.2 Size effect -- 10.2.3 Macro defect free cement -- 10.3 Polymers -- 10.3.1 Deformation modes -- 10.3.2 Glassy polymers -- 10.3.3 Semicrystalline polymers -- 10.3.4 Toughened polymers -- 10.3.5 Adhesives and adhesion -- 10.3.5.1 Strength of adhesive -- 10.3.5.2 Fracture toughness of adhesive joints -- 10.4 Composites -- 10.4.1 Reinforcing fibres -- 10.4.2 Fracture of long fibre composites -- 10.4.3 Toughness of fibre composites -- 10.5 Concluding Remarks -- 10.6 Notes -- 11. Cutting and Piercing -- 11.1 Knives, Microtomes, Guillotines, Scissors, and Punches -- 11.1.1 Cutting thin slices -- 11.1.2 Cutting thick chunks -- 11.1.3 Wedge indentation -- 11.1.4 Cutting thin sheets and plates -- 11.1.5 Cropping bars -- 11.2 Machining of Metals -- 11.2.1 The role of fracture in machining -- 11.2.2 Mechanics of machining -- 11.3 Piercing -- 11.3.1 Deep penetration of soft solids -- 11.3.2 Deep penetration of stiff solids -- 11.3.3 Piercing of sheets and plates -- 11.4 Armour and Piercing Impact -- 11.4.1 Perforation mechanisms in metal plates -- 11.4.2 Helmet development.

11.4.3 Development of battleship armour -- 11.5 Concluding Remarks -- 11.6 Notes -- 12. Recent Developments and the Twenty-First Century -- 12.1 Integrity of Thin Films and Multilayers -- 12.1.1 Interfacial toughness -- 12.1.2 Film cracking and delamination -- 12.1.2.1 Delamination and cracking under tensile residual stress -- 12.1.2.2 Delamination by buckling with or without film cracking -- 12.2 Multiscale Modelling -- 12.2.1 Continuum mechanics -- 12.2.2 Mesomechanics -- 12.2.2.1 Strain gradient plasticity -- 12.2.2.2 Dislocation dynamics -- 12.2.3 Atomistic mechanics -- 12.2.3.1 Quantum mechanics -- 12.2.3.2 Molecular dynamics -- 12.3 Nanocrystalline Materials and Polymer Nanocomposites -- 12.3.1 Nanocrystalline materials -- 12.3.2 Nanocomposites -- 12.3.2.1 Nanoparticles -- 12.3.2.2 Toughening mechanisms -- 12.3.2.3 Glassy matrices -- 12.3.2.4 Semicrystalline matrices -- 12.4 Biomimetics, Strength, and Toughness -- 12.4.1 Composites modelled on wood tracheids -- 12.4.2 Artificial Nacres -- 12.4.3 Self healing polymers -- 12.5 Concluding Remarks -- 12.6 Notes -- Appendix: Glossary of Symbols and Abbreviations -- Symbols -- Abbreviations -- Bibliography -- Name Index -- Subject Index.
Abstract:
This book is an interdisciplinary review of the effect of fracture on life, following the development of the understanding of fracture written from a historical perspective. After a short introduction to fracture, the first section of the book covers the effects of fracture on the evolution of the Earth, plants and animals, and man. The second section of the book covers the largely empirical control of fracture from ancient times to the end of the nineteenth century. The final section reviews the development of fracture theory as a discipline and its application during the twentieth century through to the present time.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: