Cover image for Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems.
Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems.
Title:
Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems.
Author:
Groves, Paul D.
ISBN:
9781608070060
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (800 pages)
Contents:
Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems Second Edition -- Contents -- Preface -- Acknowledgments -- Chapter 1 Introduction -- 1.1 Fundamental Concepts -- 1.2 Dead Reckoning -- 1.3 Position Fixing -- 1.3.1 Position-Fixing Methods -- 1.3.2 Signal-Based Positioning -- 1.3.3 Environmental Feature Matching -- 1.4 The Navigation System -- 1.4.1 Requirements -- 1.4.2 Context -- 1.4.3 Integration -- 1.4.4 Aiding -- 1.4.5 Assistance and Cooperation -- 1.4.6 Fault Detection -- 1.5 Overview of the Book -- Chapter 2 Coordinate Frames, Kinematics, and the Earth -- 2.1 Coordinate Frames -- 2.1.1 Earth-Centered Inertial Frame -- 2.1.2 Earth-Centered Earth-Fixed Frame -- 2.1.3 Local Navigation Frame -- 2.1.4 Local Tangent-Plane Frame -- 2.1.5 Body Frame -- 2.1.6 Other Frames -- 2.2 Attitude, Rotation, and Resolving Ax -- 2.2.1 Euler Attitude -- 2.2.2 Coordinate Transformation Matrix -- 2.2.3 Quaternion Attitude -- 2.2.4 Rotation Vector -- 2.3 Kinematics -- 2.3.1 Angular Rate -- 2.3.2 Cartesian Position -- 2.3.3 Velocity -- 2.3.4 Acceleration -- 2.3.5 Motion with Respect to a Rotating -- 2.4 Earth Surface and Gravity Models -- 2.4.1 The Ellipsoid Model of the Earth's -- 2.4.2 Curvilinear Position -- 2.4.3 Position Conversion -- 2.4.4 The Geoid, Orthometric Height, and -- 2.4.5 Projected Coordinates -- 2.4.6 Earth Rotation -- 2.4.7 Specific Force, Gravitation, and G -- 2.5 Frame Transformations -- 2.5.1 Inertial and Earth Frames -- 2.5.2 Earth and Local Navigation Frames -- 2.5.3 Inertial and Local Navigation Fram -- 2.5.4 Earth and Local Tangent-Plane Fram -- 2.5.5 Transposition of Navigation Soluti -- References -- Chapter 3 Kalman Filter-Based Esitmation -- 3.1 Introduction -- 3.1.1 Elements of the Kalman Filter -- 3.1.2 Steps of the Kalman Filter -- 3.1.3 Kalman Filter Applications -- 3.2 Algorithms and Models.

3.2.1 Definitions -- 3.2.2 Kalman Filter Algorithm -- 3.2.3 System Model -- 3.2.4 Measurement Model -- 3.2.5 Kalman Filter Behavior and State O -- 3.2.6 Closed-Loop Kalman Filter -- 3.2.7 Sequential Measurement Update -- 3.3 Implementation Issues -- 3.3.1 Tuning and Stability -- 3.3.2 Algorithm Design -- 3.3.3 Numerical Issues -- 3.3.4 Time Synchronization -- 3.3.5 Kalman Filter Design Process -- 3.4 Extensions to the Kalman Filter -- 3.4.1 Extended and Linearized Kalman Fil -- 3.4.2 Unscented Kalman Filter -- 3.4.3 Time-Correlated Noise -- 3.4.4 Adaptive Kalman Filter -- 3.4.5 Multiple-Hypothesis Filtering -- 3.4.6 Kalman Smoothing -- 3.5 The Particle Filter -- References -- Chapter 4 Inertial Sensors -- 4.1 Accelerometers -- 4.1.1 Pendulous Accelerometers -- 4.1.2 Vibrating-Beam Accelerometers -- 4.2 Gyroscopes -- 4.2.1 Optical Gyroscopes -- 4.2.2 Vibratory Gyroscopes -- 4.3 Inertial Measurement Units -- 4.4 Error Characteristics -- 4.4.1 Biases -- 4.4.2 Scale Factor and Cross-Coupling Er -- 4.4.3 Random Noise -- 4.4.4 Further Error Sources -- 4.4.5 Vibration-Induced Errors -- 4.4.6 Error Models -- References -- Chapter 5 Inertial Navigation -- 5.1 Introduction to Inertial Navigation -- 5.2 Inertial-Frame Navigation Equations -- 5.2.1 Attitude Update -- 5.2.2 Specific-Force Frame Transformatio -- 5.2.3 Velocity Update -- 5.2.4 Position Update -- 5.3 Earth-Frame Navigation Equations -- 5.3.1 Attitude Update -- 5.3.2 Specific-Force Frame Transformatio -- 5.3.3 Velocity Update -- 5.3.4 Position Update -- 5.4 Local-Navigation-Frame Navigation Eq -- 5.4.1 Attitude Update -- 5.4.2 Specific-Force Frame Transformatio -- 5.4.3 Velocity Update -- 5.4.4 Position Update -- 5.4.5 Wander-Azimuth Implementation -- 5.5 Navigation Equations Optimization -- 5.5.1 Precision Attitude Update -- 5.5.2 Precision Specific-Force Frame Tra.

5.5.3 Precision Velocity and Position Up -- 5.5.4 Effects of Sensor Sampling Interva -- 5.5.5 Design Tradeoffs -- 5.6 Initialization and Alignment -- 5.6.1 Position and Velocity Initializati -- 5.6.2 Attitude Initialization -- 5.6.3 Fine Alignment -- 5.7 INS Error Propagation -- 5.7.1 Short-Term Straight-Line Error Pro -- 5.7.2 Medium- and Long-Term Error Propag -- 5.7.3 Maneuver-Dependent Errors -- 5.8 Indexed IMU -- 5.9 Partial IMU -- References -- Chapter 6 Dead Reckoning, Attitude, and Height Measurement -- 6.1 Attitude Measurement -- 6.1.1 Magnetic Heading -- 6.1.2 Marine Gyrocompass -- 6.1.3 Strapdown Yaw-Axis Gyro -- 6.1.4 Heading from Trajectory -- 6.1.5 Integrated Heading Determination -- 6.1.6 Accelerometer Leveling and Tilt Se -- 6.1.7 Horizon Sensing -- 6.1.8 Attitude and Heading Reference Sys -- 6.2 Height and Depth Measurement -- 6.2.1 Barometric Altimeter -- 6.2.2 Depth Pressure Sensor -- 6.2.3 Radar Altimeter -- 6.3 Odometry -- 6.3.1 Linear Odometry -- 6.3.2 Differential Odometry -- 6.3.3 Integrated Odometry and Partial IM -- 6.4 Pedestrian Dead Reckoning Using Step -- 6.5 Doppler Radar and Sonar -- 6.6 Other Dead-Reckoning Techniques -- 6.6.1 Correlation-Based Velocity Measure -- 6.6.2 Air Data -- 6.6.3 Ship's Speed Log -- References -- Chapter 7 Principles of Radio Positioning -- 7.1 Radio Positioning Configurations and -- 7.1.1 Self-Positioning and Remote Positi -- 7.1.2 Relative Positioning -- 7.1.3 Proximity -- 7.1.4 Ranging -- 7.1.5 Angular Positioning -- 7.1.6 Pattern Matching -- 7.1.7 Doppler Positioning -- 7.2 Positioning Signals -- 7.2.1 Modulation Types -- 7.2.2 Radio Spectrum -- 7.3 User Equipment -- 7.3.1 Architecture -- 7.3.2 Signal Timing Measurement -- 7.3.3 Position Determination from Rangin -- 7.4 Propagation, Error Sources, and Posi -- 7.4.1 Ionosphere, Troposphere, and Surfa.

7.4.2 Attenuation, Reflection, Multipath -- 7.4.3 Resolution, Noise, and Tracking Er -- 7.4.4 Transmitter Location and Timing Er -- 7.4.5 Effect of Signal Geometry -- References -- Chapter 8 GNSS: Fundamentals, Signals, and Satellites -- 8.1 Fundamentals of Satellite Navigation -- 8.1.1 GNSS Architecture -- 8.1.2 Signals and Range Measurement -- 8.1.3 Positioning -- 8.1.4 Error Sources and Performance Limi -- 8.2 The Systems -- 8.2.1 Global Positioning System -- 8.2.2 GLONASS -- 8.2.3 Galileo -- 8.2.4 Beidou -- 8.2.5 Regional Systems -- 8.2.6 Augmentation Systems -- 8.2.7 System Compatibility -- 8.3 GNSS Signals -- 8.3.1 Signal Types -- 8.3.2 Global Positioning System -- 8.3.3 GLONASS -- 8.3.4 Galileo -- 8.3.7 Augmentation Systems -- 8.4 Navigation Data Messages -- 8.4.1 GPS -- 8.4.2 GLONASS -- 8.4.3 Galileo -- 8.4.4 SBAS -- 8.4.5 Time Base Synchronization -- 8.5.4 Elevation and Azimuth -- References -- Chapter 9 GNSS: User Equipment Processing and Errors -- 9.1 Receiver Hardware and Antenna -- 9.1.1 Antennas -- 9.1.2 Reference Oscillator -- 9.1.3 Receiver Front End -- 9.1.4 Baseband Signal Processor -- 9.2 Ranging Processor -- 9.2.1 Acquisition -- 9.2.2 Code Tracking -- 9.2.3 Carrier Tracking -- 9.2.4 Tracking Lock Detection -- 9.2.5 Navigation-Message Demodulation -- 9.2.6 Carrier-Power-to-Noise-Density Mea -- 9.2.7 Pseudo-Range, Pseudo-Range-Rate, a -- 9.3 Range Error Sources -- 9.3.1 Ephemeris Prediction and Satellite -- 9.3.2 Ionosphere and Troposphere Propaga -- 9.3.3 Tracking Errors -- 9.3.4 Multipath, Nonline-of-Sight, and D -- 9.4 Navigation Processor -- 9.4.1 Single-Epoch Navigation Solution -- 9.4.2 Filtered Navigation Solution -- 9.4.3 Signal Geometry and Navigation Sol -- 9.4.4 Position Error Budget -- References -- Chapter 10 GNSS: Advanced Techniques -- 10.1 Differential GNSS -- 10.1.1 Spatial and Temporal Correlation of GNSS Errors.

10.1.2 Local and Regional Area DGNSS -- 10.1.3 Wide Area DGNSS and Precise Point Positioning -- 10.1.4 Relative GNSS -- 10.2 Real-Time Kinematic Carrier-Phase Positioning and Attitude Determination -- 10.2.1 Principles of Accumulated Delta Range Positioning -- 10.2.2 Single-Epoch Navigation Solution Using Double-Differenced ADR -- 10.2.3 Geometry-Based Integer Ambiguity Resolution -- 10.2.4 Multifrequency Integer Ambiguity Resolution -- 10.2.5 GNSS Attitude Determination -- 10.3 Interference Rejection and Weak Signal Processing -- 10.3.1 Sources of Interference, Jamming, and Attenuation -- 10.3.2 Antenna Systems -- 10.3.3 Receiver Front-End Filtering -- 10.3.4 Extended Range Tracking -- 10.3.5 Receiver Sensitivity -- 10.3.6 Combined Acquisition and Tracking -- 10.3.7 Vector Tracking -- 10.4 Mitigation of Multipath Interference and Nonline-of-Sight Reception -- 10.4.1 Antenna-Based Techniques -- 10.4.2 Receiver-Based Techniques -- 10.4.3 Navigation-Processor-Based Techniques -- 10.5 Aiding, Assistance, and Orbit Prediction -- 10.5.1 Acquisition and Velocity Aiding -- 10.5.2 Assisted GNSS -- 10.5.3 Orbit Prediction -- 10.6 Shadow Matching -- References -- Chapter 11 Long- and Medium-Range Radio Navigation -- 11.1 Aircraft Navigation Systems -- 11.1.1 Distance Measuring Equipment -- 11.1.2 Range-Bearing Systems -- 11.1.3 Nondirectional Beacons -- 11.1.4 JTIDS/MIDS Relative Navigation -- 11.1.5 Future Air Navigation Systems -- 11.2 Enhanced Loran -- 11.2.1 Signals -- 11.2.2 User Equipment and Positioning -- 11.2.3 Error Sources -- 11.2.4 Differential Loran -- 11.3 Phone Positioning -- 11.3.1 Proximity and Pattern Matching -- 11.3.2 Ranging -- 11.4 Other Systems -- 11.4.1 Iridium Positioning -- 11.4.2 Marine Radio Beacons -- 11.4.3 AM Radio Broadcasts -- 11.4.4 FM Radio Broadcasts -- 11.4.5 Digital Television and Radio -- 11.4.6 Generic Radio Positioning.

References.
Abstract:
This newly revised and greatly expanded edition of the popular Artech House book Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems offers you a current and comprehensive understanding of satellite navigation, inertial navigation, terrestrial radio navigation, dead reckoning, and environmental feature matching . It provides both an introduction to navigation systems and an in-depth treatment of INS/GNSS and multisensor integration. The second edition offers a wealth of added and updated material, including a brand new chapter on the principles of radio positioning and a chapter devoted to important applications in the field. Other updates include expanded treatments of map matching, image-based navigation, attitude determination, acoustic positioning, pedestrian navigation, advanced GNSS techniques, and several terrestrial and short-range radio positioning technologies. The book shows you how satellite, inertial, and other navigation technologies work, and focuses on processing chains and error sources. In addition, you get a clear introduction to coordinate frames, multi-frame kinematics, Earth models, gravity, Kalman filtering, and nonlinear filtering. Providing solutions to common integration problems, the book describes and compares different integration architectures, and explains how to model different error sources. You get a broad and penetrating overview of current technology and are brought up to speed with the latest developments in the field, including context-dependent and cooperative positioning.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: