Cover image for Supported Ionic Liquids : Fundamentals and Applications.
Supported Ionic Liquids : Fundamentals and Applications.
Title:
Supported Ionic Liquids : Fundamentals and Applications.
Author:
Fehrmann, Rasmus.
ISBN:
9783527654819
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (497 pages)
Contents:
Supported Ionic Liquids -- Contents -- Preface -- List of Contributors -- Chapter 1 Introduction -- 1.1 A Century of Supported Liquids -- 1.2 Supported Ionic Liquids -- 1.3 Applications in Catalysis -- 1.4 Applications in Separation -- 1.5 Coating of Heterogeneous Catalysts -- 1.6 Monolayers of IL on Surfaces -- 1.7 Conclusion -- References -- Part I Concept and Building Blocks -- Chapter 2 Introducing Ionic Liquids -- 2.1 Introduction -- 2.2 Preparation -- 2.3 Liquid Range -- 2.4 Structures -- 2.4.1 The Liquid/Solid Interface -- 2.4.2 The Liquid/Gas Interface -- 2.5 Physical Properties -- 2.5.1 The Liquid/Solid Interface -- 2.5.2 The Liquid/Gas Interface -- 2.5.3 Polarity -- 2.5.4 Chromatographic Measurements and the Abraham Model of Polarity -- 2.5.5 Infinite Dilution Activity Coefficients -- 2.6 Effects of Ionic Liquids on Chemical Reactions -- 2.7 Ionic Liquids as Process Solvents in Industry -- 2.8 Summary -- References -- Chapter 3 Porous Inorganic Materials as Potential Supports for Ionic Liquids -- 3.1 Introduction -- 3.2 Porous Materials - an Overview -- 3.2.1 History -- 3.2.2 Pore Size -- 3.2.3 Structural Aspects -- 3.2.4 Chemistry -- 3.2.5 Synthesis -- 3.3 Silica-Based Materials - Amorphous -- 3.3.1 Silica Gels -- 3.3.2 Precipitated Silicas -- 3.3.3 Porous Glass -- 3.4 Layered Materials -- 3.5 Microporous Materials -- 3.5.1 Zeolites -- 3.5.2 AlPOs/SAPOs -- 3.5.3 Hierarchical Porosity in Zeolite Crystals -- 3.6 Ordered Mesoporous Materials -- 3.6.1 Silica-Based Classical Compounds -- 3.6.2 PMOs -- 3.6.3 Mesoporous Carbons -- 3.6.4 Other Mesoporous Oxides -- 3.6.5 Anodic Oxidized Materials -- 3.7 Structured Supports and Monolithic Materials -- 3.7.1 Monoliths with Hierarchical Porosity -- 3.7.2 Hierarchically Structured Reactors -- 3.8 Conclusions -- References.

Chapter 4 Synthetic Methodologies for Supported Ionic Liquid Materials -- 4.1 Introduction -- 4.2 Support Materials -- 4.3 Preparation Methods for Supported Ionic Liquids -- 4.3.1 Incipient Wetness Impregnation -- 4.3.2 Freeze-Drying -- 4.3.3 Spray Coating -- 4.3.4 Chemically Bound Ionic Liquids -- 4.3.5 IL-Silica Hybrid Materials -- 4.4 Summary -- References -- Part II Synthesis and Properties -- Chapter 5 Pore Volume and Surface Area of Supported Ionic Liquids Systems -- 5.1 Example I: [EMIM][NTf2] on Porous Silica -- 5.2 Example II: SCILL Catalyst (Commercial Ni catalyst) Coated with [BMIM][OcSO4] -- Acknowledgments -- Symbols -- Abbreviations -- References -- Chapter 6 Transport Phenomena, Evaporation, and Thermal Stability of Supported Ionic Liquids -- 6.1 Introduction -- 6.2 Diffusion of Gases and Liquids in ILs and Diffusivity of ILs in Gases -- 6.2.1 Diffusivity of Gases and Liquids in ILs -- 6.2.2 Diffusion Coefficient of Evaporated ILs in Gases -- 6.3 Thermal Stability and Vapor Pressure of Pure ILs -- 6.3.1 Drawbacks and Opportunities Regarding Stability and Vapor Pressure Measurements of ILs -- 6.3.2 Experimental Methods to Determine the Stability and Vapor Pressure of ILs -- 6.3.3 Data Evaluation and Modeling Methodology -- 6.3.3.1 Evaluation of Vapor Pressure and Decomposition of ILs by Ambient Pressure TG at Constant Heating Rate -- 6.3.3.2 Evaluation of Vapor Pressure of ILs by High Vacuum TG -- 6.3.4 Vapor Pressure Data and Kinetic Parameters of Decomposition of Pure ILs -- 6.3.4.1 Kinetic Data of Thermal Decomposition of Pure ILs -- 6.3.4.2 Vapor Pressure of Pure ILs -- 6.3.5 Guidelines to Determine the Volatility and Stability of ILs -- 6.3.6 Criteria for the Maximum Operation Temperature of ILs.

6.3.6.1 Maximum Operation Temperature of ILs with Regard to Thermal Decomposition -- 6.3.6.2 Maximum Operation Temperature of ILs with Regard to Evaporation -- 6.4 Vapor Pressure and Thermal Decomposition of Supported ILs -- 6.4.1 Thermal Decomposition of Supported ILs -- 6.4.2 Mass Loss of Supported ILs by Evaporation -- 6.4.2.1 Evaporation of ILs Coated on Silica (SILP-System) -- 6.4.2.2 Evaporation of ILs Coated on a Ni-Catalyst (SCILL-System) -- 6.4.2.3 Evaluation of Internal Surface Area by the Evaporation Rate of Supported ILs -- 6.4.3 Criteria for the Maximum Operation Temperature of Supported ILs -- 6.4.3.1 Maximum Operation Temperature of Supported ILs with Regard to Thermal Stability -- 6.4.3.2 Maximum Operation Temperature of Supported ILs with Regard to Evaporation -- 6.5 Outlook -- Acknowledgments -- Symbols -- Abbreviations -- References -- Chapter 7 Ionic Liquids at the Gas-Liquid and Solid-Liquid Interface - Characterization and Properties -- 7.1 Introduction -- 7.2 Characterization of Ionic Liquid Surfaces by Spectroscopic Techniques -- 7.2.1 Types of Interfacial Systems Involving Ionic Liquids -- 7.2.2 Overview of Surface Analytical Techniques for Characterization of Ionic Liquids -- 7.2.3 Structural and Orientational Analysis of Ionic Liquids at the Gas-Liquid Interface -- 7.2.3.1 Principles of Sum-Frequency Vibrational Spectroscopy -- 7.2.4 Cation-Specific Ionic Liquid Orientational Analysis -- 7.2.5 Anion-Specific Ionic Liquid Orientational Analysis -- 7.2.6 Ionic Liquid Interfacial Analysis by Other Surface-Specific Techniques -- 7.2.7 Ionic Liquid Effects on Surface Tension -- 7.2.8 Ionic Liquid Effects on Surface Charge Density -- 7.3 Orientation and Properties of Ionic Liquids at the Solid-Liquid Interface.

7.3.1 Surface Orientational Analysis of Ionic Liquids on Dry Silica -- 7.3.2 Cation Orientational Analysis -- 7.3.3 Alkyl Chain Length Effects on Orientation -- 7.3.4 Competing Anions and Co-adsorption -- 7.3.5 Computational Simulations of Ionic Liquid on Silica -- 7.3.6 Ionic Liquids on Titania (TiO2) -- 7.4 Comments -- References -- Chapter 8 Spectroscopy on Supported Ionic Liquids -- 8.1 NMR-Spectroscopy -- 8.1.1 Spectroscopy of Support and IL -- 8.1.2 Spectroscopy of the Catalyst -- 8.2 IR Spectroscopy -- References -- Chapter 9 A Priori Selection of the Type of Ionic Liquid -- 9.1 Introduction and Objective -- 9.2 Methods -- 9.2.1 Experimental Determination of Gas Solubilities -- 9.2.1.1 Magnetic Suspension Balance -- 9.2.1.2 Isochoric Solubility Cell -- 9.2.1.3 Inverse Gas Chromatography -- 9.2.2 Prediction of Gas Solubilities with COSMO-RS -- 9.2.3 Reaction Equilibrium and Reaction Kinetics -- 9.3 Usage of COSMO-RS to Predict Solubilities in IL -- 9.4 Results of Reaction Modeling -- 9.5 Perspectives of the A Priori Selection of ILs -- References -- Part III Catalytic Applications -- Chapter 10 Supported Ionic Liquids as Part of a Building-Block System for Tailored Catalysts -- 10.1 Introduction -- 10.2 Immobilized Catalysts -- 10.3 Supported Ionic Liquids -- 10.4 The Building Blocks -- 10.4.1 Ionic Liquid -- 10.4.2 Support -- 10.4.3 Catalytic Function -- 10.4.3.1 Type A1 - Task Specific IL -- 10.4.3.2 Type A2 - Immobilized Homogeneous Catalysts and Metal Nanoparticles -- 10.4.3.3 Type B - Heterogeneous Catalysts Coated with IL -- 10.4.3.4 Type C - Chemically Bound Monolayers of IL -- 10.4.4 Additives and Promoters -- 10.4.5 Preparation and Characterization of Catalysts Involving Supported ILs -- 10.5 Catalysis in Supported Thin Films of IL -- 10.6 Supported Films of IL in Catalysis.

10.6.1 Hydrogenation Reactions -- 10.6.2 Hydroamination -- 10.7 Advantages and Drawbacks of the Concept -- 10.8 Conclusions -- Acknowledgments -- References -- Chapter 11 Coupling Reactions with Supported Ionic Liquid Catalysts -- 11.1 Introduction -- 11.2 A Short History of Supported Ionic Liquids -- 11.3 Properties of SIL -- 11.4 Application of SIL in Coupling Reactions -- 11.4.1 C-C Coupling Reactions -- 11.4.1.1 Stille Cross Coupling Reactions -- 11.4.1.2 Friedel-Crafts Alkylation -- 11.4.1.3 Olefin Hydroformylation Reaction -- 11.4.1.4 Methanol Carbonylation -- 11.4.1.5 Suzuki Coupling Reactions -- 11.4.1.6 Heck Coupling Reactions -- 11.4.1.7 Diels-Alder Cycloaddition -- 11.4.1.8 Mukaiyama reaction -- 11.4.1.9 Biglinelli Reaction -- 11.4.1.10 Olefin Metathesis Reaction -- 11.4.2 C-N Coupling Reaction -- 11.4.2.1 Hydroamination -- 11.4.2.2 N-Arylation of N-Containing Heterocycles -- 11.4.2.3 Huisgen [3+2] Cycloaddition -- 11.4.3 Miscellaneous Coupling Reaction -- 11.5 Conclusion -- References -- Chapter 12 Selective Hydrogenation for Fine Chemical Synthesis -- 12.1 Introduction -- 12.2 Selective Hydrogenation of α,β-Unsaturated Aldehydes -- 12.3 Asymmetric Hydrogenations over Chiral Metal Complexes Immobilized in SILCAs -- 12.4 Conclusions -- References -- Chapter 13 Hydrogenation with Nanoparticles Using Supported Ionic Liquids -- 13.1 Introduction -- 13.2 MNPs Dispersed in ILs: Green Catalysts for Multiphase Reactions -- 13.3 MNPs Immobilized on Supported Ionic Liquids: Alternative Materials for Catalytic Reactions -- 13.4 Conclusions -- References -- Chapter 14 Solid Catalysts with Ionic Liquid Layer (SCILL) -- 14.1 Introduction -- 14.2 Classification of Applications of Ionic Liquids in Heterogeneous Catalysis.

14.3 Preparation and Characterization of the Physical Properties of the SCILL Systems.
Abstract:
This unique book gives a timely overview about the fundamentals and applications of supported ionic liquids in modern organic synthesis. It introduces the concept and synthesis of SILP materials and presents important applications in the field of catalysis (e.g. hydroformylation, hydrogenation, coupling reactions, fine chemical synthesis) as well as energy technology and gas separation. Written by pioneers in the field, this book is an invaluable reference book for organic chemists in academia or industry.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: