Cover image for Detecting and Classifying Low Probability of Intercept Radar.
Detecting and Classifying Low Probability of Intercept Radar.
Title:
Detecting and Classifying Low Probability of Intercept Radar.
Author:
Pace, Philip E.
ISBN:
9781596932357
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (892 pages)
Contents:
Detecting and Classifying Low Probability of Intercept Radar Second Edition -- Contents -- Foreword -- Preface -- Acknowledgments -- PART I: FUNDAMENTALS OF LPI RADAR DESIGN -- Chapter 1 To See and Not Be Seen -- 1.1 The Requirement for LPI -- 1.2 Characteristics of LPI Radar -- 1.2.1 Antenna Considerations -- 1.2.2 Achieving Ultra-Low Side Lobes -- 1.2.3 Antenna Scan Patterns for Search Processing -- 1.2.4 Advanced Multifunction RF Concept -- 1.2.5 Transmitter Considerations -- 1.2.6 Power Management -- 1.2.7 Carrier Frequency Considerations -- 1.3 Pulse Compression-The Key to LPI Radar -- 1.4 Radar Detection Range -- 1.5 Interception Range -- 1.6 Comparing Radar Range and Interception Range -- 1.7 The Pilot LPI Radar -- 1.8 Concluding Remarks -- References -- Problems -- Chapter 2 LPI Technology and Applications -- 2.1 Altimeters -- 2.1.1 Introduction -- 2.1.2 Fielded LPI Altimeters -- 2.2 Landing Systems -- 2.2.1 Introduction -- 2.2.2 Fielded LPI Landing Systems -- 2.3 Surveillance and Fire Control Radar -- 2.3.1 Battlefield Awareness -- 2.3.2 LPI Ground-Based Systems -- 2.3.3 LPI Airborne Systems -- 2.4 Antiship Capable Missile and Torpedo Seekers -- 2.4.1 A Significant Threat to Surface Navies -- 2.4.2 Fielded LPI Seeker Systems -- 2.5 Summary of LPI Radar Systems -- References -- Problems -- Chapter 3 Ambiguity Analysis of LPI Waveforms -- 3.1 The Ambiguity Function -- 3.2 Periodic Autocorrelation Function -- 3.3 Periodic Ambiguity Function -- 3.3.1 Periodicity of the PAF -- 3.3.2 Peak and Integrated Side Lobe Levels -- 3.4 Frank Phase Modulation Example -- 3.4.1 Transmitted Waveform -- 3.4.2 Simulation Results -- 3.5 Reducing the Doppler Side Lobes -- References -- Problems -- Chapter 4 FMCW Radar -- 4.1 Advantages of FMCW -- 4.2 Single Antenna LPI Radar for Target Detection -- 4.3 Transmitted Waveform Design -- 4.3.1 Triangular Waveform.

4.3.2 Waveform Spectrum -- 4.3.3 Generating Linear FM Waveforms -- 4.4 Receiver-Transmitter Isolation -- 4.4.1 Transmission Line Basics -- 4.4.2 Single Antenna Isolation Using a Circulator -- 4.4.3 Single Antenna Isolation Using a Reflected Power Canceler -- 4.5 The Received Signal -- 4.6 LPI Search Mode Processing -- 4.7 Track Mode Processing Techniques -- 4.8 Effect of Sweep Nonlinearities -- 4.9 Moving Target Indication Filtering -- 4.10 Matched Receiver Response -- 4.11 Mismatched Receiver Response -- 4.12 PANDORA FMCW Radar -- 4.13 Electronic Attack Considerations -- 4.14 Technology Trends for FMCW Emitters -- References -- Problems -- Chapter 5 Phase Shift Keying Techniques -- 5.1 Introduction -- 5.2 The Transmitted Signal -- 5.3 Binary Phase Codes -- 5.4 Polyphase Codes -- 5.5 Polyphase Barker Codes -- 5.6 Frank Code -- 5.7 P1 Code -- 5.8 P2 Code -- 5.9 P3 Code -- 5.10 P4 Code -- 5.11 Polytime Codes -- 5.11.1 T1(n) Code -- 5.11.2 T2(n) Code -- 5.11.3 T3(n) Code -- 5.11.4 T4(n) Code -- 5.12 Omnidirectional LPI Radar -- 5.13 Summary -- References -- Problems -- Chapter 6 Frequency Shift KeyingTechniques -- 6.1 Advantages of the FSK Radar -- 6.2 Description of the FSK CW Signal -- 6.3 Range Computation in FSK Radar -- 6.4 Costas Codes -- 6.4.1 Characteristics of a Costas Array or Sequence -- 6.4.2 Computing the Difference Triangle -- 6.4.3 Deriving the Costas Sequence PAF -- 6.4.4 Welch Construction of Costas Arrays -- 6.5 Hybrid FSK/PSK Technique -- 6.5.1 Description of the FSK/PSK Signal -- 6.6 Matched FSK/PSK Signaling -- 6.7 Concluding Remarks -- References -- Problems -- Chapter 7 Noise Techniques -- 7.1 Historical Perspective -- 7.2 Ultrawideband Considerations -- 7.3 Principles of Random Noise Radars -- 7.4 Narayanan Random Noise Radar Design -- 7.4.1 Operating Characteristics -- 7.4.2 Model of RNR Transmitter.

7.4.3 Periodic Ambiguity Results -- 7.5 Random Noise Plus FMCW Radar -- 7.5.1 RNFR Spectrum -- 7.5.2 Model of RNFR Transmitter -- 7.5.3 Periodic Ambiguity Results -- 7.6 Random Noise FMCW Plus Sine -- 7.6.1 Model of RNFSR Transmitter -- 7.6.2 Periodic Ambiguity Results -- 7.7 Random Binary Phase Modulation -- 7.7.1 Model of RBPC Transmitter -- 7.7.2 Periodic Ambiguity Results -- 7.8 Millimeter Wave Noise Radar -- 7.9 Correlation Receiver Techniques -- 7.9.1 Ideal Correlation -- 7.9.2 Digital-Analog Correlation -- 7.9.3 Fully Digital Correlation -- 7.9.4 Acousto-Optic Correlation -- 7.10 Concluding Remarks -- References -- Problems -- Chapter 8 Over-the-Horizon Radar -- 8.1 Two Types of OTHR -- 8.2 Sky Wave OTHR -- 8.2.1 Characteristics of the Ionosphere -- 8.2.2 Example of F2-Layer Propagation -- 8.2.3 Doppler Clutter Spectrum -- 8.2.4 Example Sky Wave OTHR System -- 8.2.5 Sky Wave Processing -- 8.3 Sky Wave LPI Waveform Considerations -- 8.3.1 Phase Modulation Techniques -- 8.3.2 Costas Frequency Hopping -- 8.3.3 Reducing the CIT -- 8.3.4 Multiple Waveform Repetition Frequencies -- 8.3.5 Out-of-Band Emission Suppression -- 8.4 Sky Wave Maximum Detection Range -- 8.5 Sky Wave Footprint Prediction -- 8.6 Surface Wave OTHR -- 8.6.1 Example Surface Wave OTHR System -- 8.7 Surface Wave LPI Waveform Considerations -- 8.7.1 FMICW Characteristics -- 8.7.2 FMICW Ambiguity Space -- 8.8 Surface Wave Maximum Detection Range -- 8.9 Concluding Remarks -- References -- Problems -- Chapter 9 Case Study: Antiship LPI Missile Seeker -- 9.1 History of ASCM Seeker Technology -- 9.2 The Future for ASCM Technology -- 9.3 Detecting the Threat -- 9.4 ASCM Target Scenario -- 9.4.1 Low RCS Targets -- 9.4.2 Sea Clutter Model -- 9.4.3 Linear FMCW Emitter Power Management -- 9.4.4 Target-to-Clutter Ratio -- 9.5 ASCM Ship Target Model -- References -- Problems.

Chapter 10 Network-Centric Warfare and Netted LPI Radar Systems -- 10.1 Network-Centric Warfare -- 10.1.1 NCW Requirements -- 10.1.2 Situational Awareness -- 10.1.3 Maneuverability -- 10.1.4 Decision Speed and Operational Tempo -- 10.1.5 Agility -- 10.1.6 Lethality -- 10.2 Metrics for Information Grid Analysis -- 10.2.1 Generalized Connectivity Measure -- 10.2.2 Reference Connectivity Measure -- 10.2.3 Network Reach -- 10.2.4 Suppression Example -- 10.2.5 Extended Generalized Connectivity Measure -- 10.2.6 Entropy and Network Richness -- 10.2.7 Maximum Operation Tempo -- 10.3 Electronic Attack -- 10.4 Information Network Analysis Using LPIsimNet -- 10.5 Netted LPI Radar Systems -- 10.5.1 Advantages of the Netted LPI Radar Systems -- 10.5.2 Netted LPI Radar Sensitivity -- 10.5.3 Signal Model -- 10.5.4 Netted Radar Electronic Attack -- 10.6 Netted Radar Analysis Using LPIsimNet -- 10.6.1 Monostatic LPI Emitter and the SNR Contour Chart -- 10.6.2 Three Netted LPI Emitters -- 10.6.3 Two Netted LPI Emitters with Jammer -- 10.7 Orthogonal Waveforms for Netted Radar -- 10.7.1 Orthogonal Polyphase Codes -- 10.7.2 Addressing Doppler Shift Degradation -- 10.7.3 Orthogonal Frequency Hopping Sequences -- 10.7.4 Noise Waveforms -- 10.8 Netted Over-the-Horizon Radar Systems -- References -- Problems -- PART II: INTERCEPT RECEIVER STRATEGIES AND SIGNAL PROCESSING -- Chapter 11 Strategies for Intercepting LPI Radar Signals -- 11.1 EW Intercept Receiver Techniques -- 11.1.1 Traditional Approach -- 11.1.2 The Look-Through Problem -- 11.1.3 Modern Network-Centric Concepts Arriving -- 11.2 Detecting the LPI Radar with UAVs -- 11.3 Noncooperative Intercept Receivers -- 11.3.1 Comparison of Classic Receiver Architectures for Detecting LPI Waveforms -- 11.3.2 Digital EW Receivers -- 11.3.3 Direct RF Sampling -- 11.4 Demodulation of the LPI Waveform.

11.5 EW Receiver Challenges -- 11.6 Concluding Remarks -- References -- Chapter 12 Wigner-Ville Distribution Analysis of LPI Radar Waveforms -- 12.1 Wigner-Ville Distribution -- 12.1.1 Continuous WVD -- 12.1.2 Example Calculation: Real Input Signal -- 12.1.3 Example Calculation: Complex Input Signal -- 12.1.4 Two-Tone Input Signal Results -- 12.2 FMCW Analysis -- 12.3 BPSK Analysis -- 12.4 Polyphase Code Analysis -- 12.5 Polytime Code Analysis -- 12.6 Distinguishing Between Phase Codes -- 12.7 FSK and FSK/PSK Analysis -- 12.8 Summary -- References -- Problems -- Chapter 13 Choi-Williams Distribution Analysis of LPI Radar Waveforms -- 13.1 Mathematical Development -- 13.2 LPI Signal Analysis -- 13.2.1 FMCW Analysis -- 13.2.2 BPSK Analysis -- 13.2.3 Polyphase Code Analysis -- 13.2.4 Polytime Code Analysis -- 13.2.5 FSK and FSK/PSK Analysis -- 13.3 Summary -- References -- Problems -- Chapter 14 LPI Radar Analysis Using Quadrature Mirror Filtering -- 14.1 Time-Frequency Wavelet Decomposition -- 14.1.1 Basis Functions -- 14.1.2 Short-Time Fourier Transform Decomposition -- 14.1.3 Wavelets and the Wavelet Transform -- 14.1.4 Wavelet Filters -- 14.2 Discrete Two-Channel Quadrature Mirror Filter Bank -- 14.3 Tree Structure to Filter the Lowpass Component -- 14.4 Tree Structure to Filter the Highpass Component -- 14.5 QMFB Tree Receiver -- 14.6 Example Calculations -- 14.6.1 Complex Single-Tone Signal -- 14.6.2 Complex Two-Tone Signal -- 14.7 FMCW Analysis -- 14.8 BPSK Analysis -- 14.9 Polyphase Code Analysis -- 14.10 Polytime Code Analysis -- 14.11 Costas Frequency Hopping Analysis -- 14.12 FSK/PSK Signal Analysis -- 14.13 Noise Waveform Analysis -- 14.14 Summary -- References -- Problems -- Chapter 15 Cyclostationary Spectral Analysis for Detection of LPI Radar Parameters -- 15.1 Introduction -- 15.1.1 Cyclic Autocorrelation.

15.1.2 Spectral Correlation Density.
Abstract:
This revised and expanded second edition brings you to the cutting edge with new chapters on LPI radar design, including over-the-horizon radar, random noise radar, and netted LPI radar. You also discover critical LPI detection techniques, parameter extraction signal processing techniques, and anti-radiation missile design strategies to counter LPI radar.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: