Cover image for Imaging Marine Life : Macrophotography and Microscopy Approaches for Marine Biology.
Imaging Marine Life : Macrophotography and Microscopy Approaches for Marine Biology.
Title:
Imaging Marine Life : Macrophotography and Microscopy Approaches for Marine Biology.
Author:
Reynaud, Emmanuel G.
ISBN:
9783527664207
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (277 pages)
Contents:
Imaging Marine Life -- Contents -- Preface -- List of Contributors -- Chapter 1 Under the Eye of Neptune: An Historical Perspective of Marine Creature Imagery -- 1.1 Introduction -- 1.2 Ancient Uses of the Oceans -- 1.2.1 Seafarers -- 1.2.2 The Mediterranean Sea: the cradle of marine biology -- 1.2.2.1 Aristotle and Pliny the Elder, the Founding Fathers -- 1.2.2.2 Understanding the Oceans -- 1.3 From Neptune to Animalcules -- 1.3.1 Age of European Discovery and Exploration -- 1.3.2 Voyages of Exploration and finally Science -- 1.3.3 A Glimpse at the Invisible -- 1.4 The Birth of Oceanography (The Nineteenth Century) -- 1.4.1 Drawing the Jellyfish -- 1.4.2 The H.M.S. Challenger Expedition -- 1.4.3 Stations and Institutions -- 1.5 The Twentieth Century: Institutions and moving images -- 1.5.1 New tools - new images: -- 1.5.2 Jean Painleve -- 1.5.3 The Writers and the Explorers -- 1.5.4 The Future -- 1.6 Time Line of Ocean Imagery -- Further Reading -- Basic Texts -- Source Books -- Ships and Expeditions -- Institutions -- Chapter 2 New Solutions in Underwater Imaging and Vision Systems -- 2.1 Introduction -- 2.2 Underwater Optical Image Formation -- 2.3 Illumination Techniques -- 2.3.1 Illumination Sources -- 2.3.2 Selection of the Light Source Position -- 2.3.3 Illuminating Systems -- 2.4 Laser-Based Techniques -- 2.4.1 Laser Range-Gating (LRG) Methods -- 2.4.2 Laser Line Scan (LLS) Methods -- 2.4.3 Scattered Light Rejection Using Modulation/Demodulation Techniques -- 2.5 Underwater Imaging Infrastructures -- 2.6 Image Improvement via Polarization -- 2.6.1 Extended Range Using Polarization -- 2.6.2 Housing -- 2.6.3 Experimental Evaluation -- 2.7 A Vision System for Underwater Applications -- 2.7.1 The Fugu Vision System -- 2.8 Conclusion -- Acknowledgements -- References.

Chapter 3 Holographic Microscopy of Marine Organisms -- 3.1 Introduction -- 3.2 Advantages of Holographic Microscopy -- 3.3 Past Attempts to Image Microplankton -- 3.4 Point Source Digital In-Line Holographic Microscopy -- 3.4.1 Instruments -- 3.4.2 Image Reconstruction -- 3.4.3 Image Examples -- 3.4.4 Resolution -- 3.4.5 Volume Imaging Challenges -- 3.5 Future Outlook -- References -- Chapter 4 Confocal Laser Scanning Microscopy - Detailed Three-Dimensional Morphological Imaging of Marine Organisms -- 4.1 Introduction -- 4.2 Technical and Methodological Aspects of Confocal Laser Scanning Microscopy -- 4.3 Prerequisites for Generating High-Quality Confocal Laser Scanning Micrographs -- 4.4 Using Autofluorescences for Detailed Three-Dimensional Morphological Imaging -- 4.5 Application of Fluorescence Dyes -- 4.6 Surface Topography Analyses -- 4.7 Future Perspectives -- Acknowledgements -- References -- Chapter 5 Optical Projection Tomography -- 5.1 Introduction -- 5.2 What Is Optical Projection Tomography? -- 5.2.1 Assembly of an OPT System -- 5.2.1.1 Detection Unit -- 5.2.1.2 Illumination Units -- 5.2.1.3 Sample Manipulation Unit -- 5.2.2 Illumination Sources -- 5.2.3 System Capabilities and Limitations -- 5.3 Comparison with Other 3D Microscopy Techniques -- 5.3.1 Confocal Microscopy -- 5.3.2 Two-Photon Microscopy -- 5.4 Sample Preparation -- 5.5 Image Processing and Analysis -- 5.6 Marine Biology Applications -- Acknowledgments -- References -- Chapter 6 Electron Microscopy Techniques for Imaging Marine Phytoplankton -- 6.1 Introduction -- 6.2 Collecting and Processing Specimens -- 6.3 Light Microscopy -- 6.4 Sediment Cyst Surveys -- 6.5 Transmission Electron Microscopy -- 6.6 Scanning Electron Microscopy -- Acknowledgements -- References.

Chapter 7 Looking Inside Marine Organisms with Magnetic Resonance and X-ray Imaging -- 7.1 Introduction -- 7.2 Magnetic Resonance Imaging -- 7.2.1 Experimental Setup -- 7.2.2 Hardware Improvements -- 7.2.3 Contrast -- 7.2.4 Applications -- 7.2.4.1 Anatomical MRI -- 7.2.4.2 Functional MRI -- 7.2.4.3 Diffusion Tensor Imaging or Diffusion MRI (DTI) -- 7.2.4.4 MEMRI or Manganese-Enhanced Magnetic Resonance Imaging -- 7.3 X-Ray Microtomography -- 7.3.1 Sources -- 7.3.1.1 Laboratory-Based Setups -- 7.3.1.2 Synchrotron-Based Setups -- 7.3.2 Sample Stage -- 7.3.3 Detector -- 7.3.4 Forward Problem (Contrast Formation) -- 7.3.5 Tomographic Reconstruction -- 7.3.5.1 2D Filtered Back-Projection -- 7.3.5.2 Image Quality and Artifacts -- 7.3.5.3 3D Image Reconstruction -- 7.4 Synchrotron laminography -- 7.4.1 Introduction -- 7.4.2 Image Reconstruction -- 7.4.3 Example Applications -- 7.5 Absorption Imaging -- 7.5.1 Natural Contrast -- 7.5.2 Staining Contrast -- 7.6 Phase-Contrast Imaging -- 7.6.1 Introduction -- 7.6.2 Free-Space Propagation Methods (Holotomography) -- 7.6.3 Analyzer-Based Imaging -- 7.6.3.1 Applications -- 7.6.4 X-Ray Grating Interferometry -- 7.6.4.1 Introduction -- 7.6.4.2 Performance Characteristics and Applications -- 7.7 Applications (Post-treatment) -- 7.7.1 Segmentation - Visualization Methods -- 7.7.1.1 Main Visualization Methods -- 7.7.1.2 Classification and Segmentation -- 7.7.2 Numeric Simulation - Testing Hypotheses on Adaptive Evolution in Marine Vertebrates Using 3D Imaging Tools -- 7.8 Conclusion -- Acknowledgements -- References -- Chapter 8 Imaging Marine Life with a Thin Light-Sheet -- 8.1 Introduction -- 8.2 Fluorescence Microscopy Methods -- 8.2.1 Fluorescence -- 8.2.2 Epi-Fluorescence Wide-Field Microscopy -- 8.2.3 Confocal Laser Scanning Fluorescence Microscopy.

8.2.4 Other Approaches for Optical Sectioning -- 8.3 Light-Sheet Fluorescence Microscopy -- 8.3.1 Concept -- 8.3.2 Implementations and Instruments -- 8.3.2.1 Illumination Unit -- 8.3.2.2 Detection Unit -- 8.3.2.3 Sample Chamber and Movement Unit -- 8.3.3 Spatial Resolution -- 8.3.4 Sample Mounting -- 8.3.5 Upright LSFM: an Alternative Configuration with Simplified Sample Mounting -- 8.4 Advantages of LSFM -- 8.5 How to Improve LSFM Imaging -- 8.6 Different Ways to Generate a Light-Sheet -- 8.6.1 Digital Scanned Light-Sheet Microscope -- 8.6.2 Incoherent Structured Illumination -- 8.6.3 Two-Photon Excitation -- 8.6.4 Bessel Beams -- 8.7 Application Examples -- 8.8 LSFM Combined with Other Fluorescence Techniques -- 8.9 Light-Sheet Fluorescence Microscopy for Marine Biology -- 8.10 Summary and Outlook -- References -- Chapter 9 Ex-situ Macro Photography of Marine Life -- 9.1 Introduction -- 9.2 The Exposure -- 9.2.1 Shutter Speed -- 9.2.2 Aperture -- 9.2.3 ISO Value -- 9.2.4 Depth of Field (DoF) -- 9.2.5 Camera Settings -- 9.2.6 What Is a Good Exposure? -- 9.3 Using Flashes -- 9.3.1 Controlling Exposure -- 9.3.2 Positioning and Shaping the Light -- 9.4 Equipment -- 9.4.1 Camera -- 9.4.2 Lenses -- 9.4.3 Flashes -- 9.4.4 Flash Accessories and Lighting Gear -- 9.4.5 Aquarium Setup -- 9.4.6 Other Accessories -- 9.5 Macro Photography of Marine Life -- 9.5.1 Setting up the Camera -- 9.5.2 Positioning the Flashes -- 9.5.2.1 Lighting Small Animals -- 9.5.2.2 Lighting Bigger Animals -- 9.5.2.3 Water Quality -- 9.6 After the Photographic Shoot -- 9.6.1 File Formats -- 9.6.2 Post-processing Workflow -- 9.6.3 Selecting Images -- 9.7 Animal Care -- 9.7.1 Collecting -- 9.7.2 Handling and Imaging -- Acknowledgements -- References -- Chapter 10 Automated Image Processing in Marine Biology -- 10.1 Introduction.

10.2 Methods of Planktonic Community Analysis -- 10.2.1 General Methods -- 10.2.2 Semi-automated Options -- 10.3 Semi-automated Planktonic Community Analysis -- 10.3.1 Work Flow of Analysis -- 10.3.1.1 Sample Collection -- 10.3.1.2 Image Capture -- 10.3.1.3 Importation and Segmentation -- 10.3.1.4 Classifier Generation -- 10.3.1.5 Classification -- 10.4 Future Directions -- 10.5 Conclusion -- References -- Index.
Abstract:
Written by an international team of experts from the Tara Oceans Marine Biology Imaging Platform (TAOMI), this is the first and only compendium on marine imaging technologies, and includes all known underwater as well as on-land techniques. TAOMI is imaging the largest collection of marine organisms in recent history, ranging from viruses to corals, and is duplicated on land to perform high throughput confocal analysis of plankton, X-ray tomography as well as cryo-electron microscopy. This unique platform combines underwater imaging with cytometry, stereomicroscopy, fluorescence microscopy and 3D microscopy - all of which are covered in this practical book, along with remote sensing, MRI, and optical projection tomography. The definitive resource for every marine biologist who is planning to image marine species, whether underwater or on land.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: