Cover image for Proton Transfer Reaction Mass Spectrometry : Principles and Applications.
Proton Transfer Reaction Mass Spectrometry : Principles and Applications.
Title:
Proton Transfer Reaction Mass Spectrometry : Principles and Applications.
Author:
Ellis, Andrew M.
ISBN:
9781118683576
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (399 pages)
Contents:
Proton Transfer Reaction Mass Spectrometry -- Contents -- Preface -- SECTION 1 PRINCIPLES -- 1 Background -- 1.1 Volatile Organic Compounds in the Earth's Atmosphere -- 1.2 Volatile Organic Compounds in Other Environments -- 1.3 Techniques for VOC Measurements -- 1.3.1 Gas Chromatography -- 1.3.2 Ion Mobility Spectrometry -- 1.3.3 The Flowing Afterglow Technique -- 1.3.4 The Selected Ion Flow Tube -- 1.4 Emergence of Proton Transfer Reaction Mass Spectrometry -- 1.4.1 Historical Background -- 1.4.2 Compound Identification Using PTR-MS -- 1.4.3 An Introduction to Quantitative Aspects of PTR-MS -- 1.4.4 A Comparison between PTR-MS and SIFT-MS -- References -- 2 Chemical Ionization: Chemistry, Thermodynamics and Kinetics -- 2.1 Introduction -- 2.2 Proton Transfer -- 2.2.1 Energy Units -- 2.2.2 Thermodynamics of Proton Transfer -- 2.2.3 Kinetics of Proton Transfer -- 2.2.3.1 Background -- 2.2.3.2 Theoretical Prediction of Proton Transfer Rate Coefficients -- 2.2.3.3 Illustrative Calculations of Proton Transfer Rate Coefficients and Comparison with Experiment -- 2.2.4 Reagents and Mechanisms -- 2.2.4.1 Chemistry of H3O+ Reactions -- 2.2.4.2 Reactions of Hydrated Hydronium Clusters -- 2.2.4.3 Alternative Proton Donors -- 2.3 Other Chemical Ionization Processes -- References -- 3 Experimental: Components and Principles -- 3.1 Introduction -- 3.2 Ion Extraction and Ion Optics -- 3.2.1 Ion Acceleration -- 3.2.2 Ion Steering -- 3.2.3 Ion Lenses -- 3.2.4 Simulation of Ion Trajectories -- 3.3 Ion Sources -- 3.3.1 Hollow Cathode Discharge Ion Source -- 3.3.2 IonĐMolecule Chemistry Leading to H3O+ Production -- 3.3.3 Alternative Ion Sources -- 3.3.4 Generating Reagent Ions Other Than H3O+ -- 3.4 Drift Tubes -- 3.4.1 Practical Aspects -- 3.4.2 Ion Mobility and Transit Times -- 3.4.3 IonĐMolecule Collision Energies -- 3.4.4 Ion Cluster Distributions.

3.5 Mass Spectrometry -- 3.5.1 Some Important Definitions -- 3.5.1.1 Ion Mass and Mass-to-Charge Ratio -- 3.5.1.2 Mass Resolution -- 3.5.1.3 Transmission and Dynamic Range -- 3.5.2 Quadrupole Mass Spectrometry -- 3.5.2.1 Basic Principles of the Quadrupole Mass Spectrometer -- 3.5.2.2 Practical Issues -- 3.5.3 Quadrupole Ion Trap Mass Spectrometry -- 3.5.3.1 Basic Principles -- 3.5.3.2 Collision-Induced Dissociation -- 3.5.3.3 Three-Dimensional Quadrupole Ion Traps in PTR-MS -- 3.5.3.4 The Linear Ion Trap in PTR-MS -- 3.5.4 Time-of-flight Mass Spectrometry -- 3.5.4.1 Basic Principles of TOF-MS -- 3.5.4.2 Improving the Resolution: Spatial Focusing -- 3.5.4.3 Reflectron TOF-MS -- 3.5.4.4 Mass Calibration in TOF-MS -- 3.5.4.5 Advantages and Limitations of TOF-MS -- 3.5.4.6 TOF-MS Analysers in PTR-MS -- 3.6 Ion Detectors -- 3.6.1 Discrete Dynode Detector -- 3.6.2 Channel Electron Multiplier -- 3.6.3 Microchannel Plate Detector -- 3.7 Analogue versus Digital Signal Processing -- References -- 4 Quantitative Analysis -- 4.1 Introduction -- 4.2 Extracting the Concentration of a Trace Gas from PTR-MS -- 4.3 Normalized Counts per Second -- 4.4 Why Calibrate? -- 4.5 Calibration Techniques -- 4.5.1 Static Gas Calibration -- 4.5.2 Dynamic Methods -- 4.5.3 Alternative Dynamic Calibration Procedures -- 4.6 Effect of Humidity -- 4.7 Accuracy, Precision and Limit of Detection -- 4.8 Validation of PTR-MS -- References -- SECTION 2 APPLICATIONS -- 5 PTR-MS in the Environmental Sciences -- 5.1 Background -- 5.2 Use of Reagent Ions Other Than H3O+ -- 5.3 Biogenic VOCs -- 5.3.1 General Details -- 5.3.2 Forest Emissions -- 5.3.2.1 Tropical Rainforests -- 5.3.2.2 Coniferous Forests -- 5.3.2.3 Deciduous Forests -- 5.3.2.4 Eddy Covariance Measuring Methodologies -- 5.3.2.5 Forest VOCs and m/z Assignments -- 5.3.3 Plantations -- 5.3.4 Various Land Emissions.

5.3.4.1 Woodland and Grassland Savannahs -- 5.3.4.2 Shrubland -- 5.3.4.3 Alfalfa and Grass Fields -- 5.3.5 Oceans and Seas -- 5.3.5.1 Norwegian Fjord -- 5.3.5.2 Coastal Regions -- 5.3.5.3 Indian Ocean -- 5.3.5.4 Tropical Atlantic Ocean -- 5.4 Anthropogenic VOCs -- 5.4.1 Background -- 5.4.2 VOCs in Urban and Rural Sites -- 5.4.2.1 Innsbruck -- 5.4.2.2 Caracas -- 5.4.2.3 Houston -- 5.4.2.4 Tokyo -- 5.4.2.5 Barcelona -- 5.4.2.6 Manchester and London -- 5.4.2.7 Mexico City -- 5.4.2.8 Toronto and Environs -- 5.4.2.9 Paris -- 5.4.2.10 Boston, New York and Los Angeles -- 5.4.3 Diesel Engine Emissions -- 5.4.4 Aircraft Emissions -- 5.4.5 VOC Emissions Associated with Farming -- 5.4.5.1 Cattle -- 5.4.5.2 Pigs and Sheep -- 5.4.6 Other Studies of Anthropogenic VOCs -- 5.4.6.1 Air Quality -- 5.4.6.2 Firework Emissions -- 5.5 Biomass Burning -- 5.6 Applications of PTR-MS to Laboratory Studies of Atmospheric Chemistry -- 5.6.1 Laboratory Studies of Biomass Burning -- 5.6.2 Reaction Products and Reactive Species -- 5.6.3 Simulation Chamber and Container Measurements -- 5.7 Plant Studies -- 5.7.1 Isoprene Emissions -- 5.7.2 Acetaldehyde Emissions -- 5.7.3 Pollination -- 5.7.4 Roots and Soil -- 5.7.5 Other Plant Studies -- 5.7.5.1 Root-secreted VOCs -- 5.7.5.2 Methanol Release and Bacterial Growth: Plant-Methylobacterium Association -- 5.7.5.3 Comparison of VOC Emissions from Young and Mature Leaves -- 5.7.6 Stress-Related Emissions -- 5.7.7 VOC Emissions Linked to Plant Damage -- 5.7.7.1 Mechanical Wounding -- 5.7.7.2 Weather Damage -- 5.7.7.3 Harvesting and Mowing -- 5.7.7.4 Biofuel Crops -- 5.7.7.5 Herbivore Attack by Small Predators -- 5.7.7.6 Large Herbivore Attack -- 5.7.8 VOC Uptake by Plants -- 5.8 Outlook for Atmospheric and Environmental Applications of PTR-MS -- References -- 6 PTR-MS in the Food Sciences -- 6.1 Background.

6.2 Combined GC-MS and PTR-MS Studies for Food Analysis -- 6.3 Mass Spectral Fingerprinting -- 6.4 Flavour Release and Perception -- 6.4.1 Drinks -- 6.4.1.1 Coffee -- 6.4.1.2 Tea -- 6.4.1.3 Carbonated Drinks -- 6.4.1.4 Fruit Juices -- 6.4.1.5 Wine -- 6.4.1.6 Vodka -- 6.4.1.7 Infant Formula -- 6.4.2 Food -- 6.4.2.1 Cheese -- 6.4.2.2 Bread -- 6.4.2.3 Onions -- 6.4.2.4 Wheys -- 6.4.2.5 Fruit -- 6.4.3 Flavour Release: Food Texture, Composition and Physiological Effects -- 6.5 Food Classification, Food Quality and Food Control -- 6.5.1 Geographical Location -- 6.5.1.1 White Truffles -- 6.5.1.2 Butter -- 6.5.1.3 Olive Oil -- 6.5.1.4 Roe -- 6.5.1.5 Dry-Cured Ham -- 6.5.1.6 Cumin Cheese -- 6.5.2 Food Classification and Quality -- 6.5.3 Food Freshness and Ripening -- 6.5.3.1 Meat Degradation -- 6.5.3.2 Fruit and Vegetables: Ripening, Storage and Monitoring -- 6.5.3.3 Ripening of Cheese -- 6.5.4 Process Monitoring and Biochemical Processing -- 6.6 Outlook for Food Science and Technology Applications -- References -- 7 PTR-MS in the Medical Sciences -- 7.1 Background -- 7.2 Breath Analysis -- 7.2.1 Smoking and Breath Volatiles -- 7.2.2 Isoprene in Breath -- 7.2.3 Acetone in Breath -- 7.2.4 Lung Studies: Cancer and Emphysema -- 7.2.5 Other PTR-MS Breath Studies -- 7.2.5.1 Crohn's Disease and Ulcerative Colitis -- 7.2.5.2 Carbohydrate Malabsorption -- 7.2.5.3 High Mass-Resolution PTR-TOF-MS Breath Studies -- 7.2.5.4 Kidney Function and PTR-MS -- 7.2.5.5 Liver Disease -- 7.2.6 Drug Monitoring and Pharmacokinetics Using Breath Analysis and PTR-MS -- 7.2.7 Breath VOC Levels Measured Using PTR-MS versus Blood Concentrations -- 7.2.8 Breath Sampling and PTR-MS -- 7.2.8.1 Offline Breath Sampling -- 7.2.8.2 Online Breath Sampling -- 7.2.9 PTR-MS and Breath Analysis: Requirements and Future Directions.

7.3 Online PTR-MS Measurements of Volatile Emissions from Microbial Cultures -- 7.3.1 Bacteria -- 7.3.2 VOC Emissions from Fungi -- 7.3.3 Concluding Remarks on Microbial Emissions -- 7.4 Other Medical Applications -- 7.4.1 Urine Headspace Analysis -- 7.4.2 Skin Emissions -- 7.4.3 VOC Emissions from Human Cells -- 7.4.4 VOCs in Clinical Environments -- References -- 8 Applications of PTR-MS to Homeland Security: The Detection of Threat Agents -- 8.1 Background -- 8.2 Explosives -- 8.2.1 Forensic Issues -- 8.2.1.1 The Unambiguous Detection of TNT -- 8.2.1.2 High Mass Resolution PTR-TOF-MS Measurements of TNT -- 8.2.1.3 Reagent Ion Switching and Explosives Detection -- 8.2.1.4 PTR-MS and the Detection of Traces of Explosives -- 8.2.2 Environmental Aspects and Explosives -- 8.3 Chemical Warfare Agents and Toxic Industrial Chemicals -- 8.4 Narcotics -- 8.5 Date Rape Drugs -- 8.6 Ion Mobility Mass Spectrometry and PTR-MS: A Brief Comparison for Homeland Security Applications -- 8.7 Future Directions -- References -- 9 Liquid Analysis Using PTR-MS -- 9.1 Determination of Henry's Law Constants Using PTR-MS -- 9.2 Analysis of Liquids -- References -- Index.
Abstract:
Proton Transfer Reaction Mass Spectrometry (PTR-MS) is a rapidly growing analytical technique for detecting and identifying very small quantities of chemical compounds in air. It has seen widespread use in atmospheric monitoring and food science and shows increasing promise in applications such as industrial process monitoring, medical science and in crime and security scenarios.   Written by leading researchers, this is the first book devoted to PTR-MS and it provides a comprehensive account of the basic principles, the experimental technique and various applications, thus making this book essential reading for researchers, technicians, postgraduate students and professionals in industry. The book contains nine chapters and is divided into two parts. The first part describes the underlying principles of the PTR-MS technique, including  the relevant ion-molecule chemistry  thermodynamics and reaction kinetics  a discussion of ion sources, drift tubes and mass spectrometers  practical aspects of PTR-MS, including calibration. The second part of the book turns its attention to some of the many applications of PTR-MS, demonstrating the scope and benefits, as well as the limitations, of the technique. The chapters that make up the second part of the book build upon the material presented in the first part and are essentially self-contained reviews focusing on the following topics: environmental science  food science medicine  homeland security, and applications of PTR-MS in liquid analysis.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: