Cover image for Glass Ceramic Technology.
Glass Ceramic Technology.
Title:
Glass Ceramic Technology.
Author:
Holand, Wolfram.
ISBN:
9781118265819
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (436 pages)
Contents:
Glass-Ceramic Technology -- CONTENTS -- INTRODUCTION TO THE SECOND EDITION -- INTRODUCTION TO THE FIRST EDITION -- HISTORY -- CHAPTER 1: PRINCIPLES OF DESIGNING GLASS-CERAMIC FORMATION -- 1.1 ADVANTAGES OF GLASS-CERAMIC FORMATION -- 1.1.1 Processing Properties -- 1.1.2 Thermal Properties -- 1.1.3 Optical Properties -- 1.1.4 Chemical Properties -- 1.1.5 Biological Properties -- 1.1.6 Mechanical Properties -- 1.1.7 Electrical and Magnetic Properties -- 1.2 FACTORS OF DESIGN -- 1.3 CRYSTAL STRUCTURES AND MINERAL PROPERTIES -- 1.3.1 Crystalline Silicates -- 1.3.1.1 Nesosilicates -- 1.3.1.2 Sorosilicates -- 1.3.1.3 Cyclosilicates -- 1.3.1.4 Inosilicates -- 1.3.1.5 Phyllosilicates -- 1.3.1.6 Tectosilicates -- 1.3.2 Phosphates -- 1.3.2.1 Apatite -- 1.3.2.2 Orthophosphates and Diphosphates -- 1.3.2.3 Metaphosphates -- 1.3.3 Oxides -- 1.3.3.1 TiO2 -- 1.3.3.2 ZrO2 -- 1.3.3.3 MgAl2O4 (Spinel) -- 1.4 NUCLEATION -- 1.4.1 Homogeneous Nucleation -- 1.4.2 Heterogeneous Nucleation -- 1.4.3 Kinetics of Homogeneous and Heterogeneous Nucleation -- 1.4.4 Examples for Applying the Nucleation Theory in the Development of Glass-Ceramics -- 1.4.4.1 Volume Nucleation -- 1.4.4.2 Surface Nucleation -- 1.4.4.3 Time-Temperature-Transformation Diagrams -- 1.5 CRYSTAL GROWTH -- 1.5.1 Primary Growth -- 1.5.2 Anisotropic Growth -- 1.5.3 Surface Growth -- 1.5.4 Dendritic and Spherulitic Crystallization -- 1.5.4.1 Phenomenology -- 1.5.4.2 Dendritic and Spherulitic Crystallization Applications -- 1.5.5 Secondary Grain Growth -- CHAPTER 2: COMPOSITION SYSTEMS FOR GLASS-CERAMICS -- 2.1 ALKALINE AND ALKALINE EARTH SILICATES -- 2.1.1 SiO2-Li2O (Lithium Disilicate) -- 2.1.1.1 Stoichiometric Composition -- 2.1.1.2 Nonstoichiometric Multicomponent Compositions -- 2.1.2 SiO2-BaO (Sanbornite) -- 2.1.2.1 Stoichiometric Barium-Disilicate -- 2.1.2.2 Multicomponent Glass-Ceramics.

2.2 ALUMINOSILICATES -- 2.2.1 SiO2-Al2O3 (Mullite) -- 2.2.2 SiO2-Al2O3-Li2O (β-Quartz Solid Solution, β-Spodumene Solid Solution) -- 2.2.2.1 β-Quartz Solid Solution Glass-Ceramics -- 2.2.2.2 β-Spodumene Solid-Solution Glass-Ceramics -- 2.2.3 SiO2-Al2O2-Na2O (Nepheline) -- 2.2.4 SiO2-Al2O3-Cs2O (Pollucite) -- 2.2.5 SiO2-Al2O3-MgO (Cordierite, Enstatite, Forsterite) -- 2.2.5.1 Cordierite Glass-Ceramics -- 2.2.5.2 Enstatite Glass-Ceramics -- 2.2.5.3 Forsterite Glass-Ceramics -- 2.2.6 SiO2-Al2O3-CaO (Wollastonite) -- 2.2.7 SiO2-Al2O3-ZnO (Zn-Stuffed β-Quartz, Willemite-Zincite) -- 2.2.7.1 Zinc-Stuffed β-Quartz Glass-Ceramics -- 2.2.7.2 Willemite and Zincite Glass-Ceramics -- 2.2.8 SiO2-Al2O3-ZnO-MgO (Spinel, Gahnite) -- 2.2.8.1 Spinel Glass-Ceramic Without β-Quartz -- 2.2.8.2 β-Quartz-Spinel Glass-Ceramics -- 2.2.9 SiO2-Al2O3-CaO (Slag Sital) -- 2.2.10 SiO2-Al2O3-K2O (Leucite) -- 2.2.11 SiO2-Ga2O3-Al2O3-Li2O-Na2O-K2O (Li-Al-Gallate Spinel) -- 2.2.12 SiO2-Al2O3-SrO-BaO (Sr-Feldspar-Celsian) -- 2.3 FLUOROSILICATES -- 2.3.1 SiO2-(R3+)2O3-MgO-(R2+)O-(R+)2O-F (Mica) -- 2.3.1.1 Alkaline Phlogopite Glass-Ceramics -- 2.3.1.2 Alkali-Free Phlogopite Glass-Ceramics -- 2.3.1.3 Tetrasilicic Mica Glass-Ceramic -- 2.3.2 SiO2-Al2O3-MgO-CaO-ZrO2-F (Mica, Zirconia) -- 2.3.3 SiO2-CaO-R2O-F (Canasite) -- 2.3.4 SiO2-MgO-CaO-(R+)2O-F (Amphibole) -- 2.4 SILICOPHOSPHATES -- 2.4.1 SiO2-CaO-Na2O-P2O5 (Apatite) -- 2.4.2 SiO2-MgO-CaO-P2O5-F (Apatite, Wollastonite) -- 2.4.3 SiO2-MgO-Na2O-K2O-CaO-P2O5 (Apatite) -- 2.4.4 SiO2-Al2O3-MgO-CaO-Na2O-K2O-P2O5-F (Mica, Apatite) -- 2.4.5 SiO2-MgO-CaO-TiO2-P2O5 (Apatite, Magnesium Titanate) -- 2.4.6 SiO2-Al2O3-CaO-Na2O-K2O-P2O5-F (Needlelike Apatite) -- 2.4.6.1 Formation of Needlelike Apatite as a Parallel Reaction to Rhenanite -- 2.4.6.2 Formation of Needlelike Apatite from Disordered Spherical Fluoroapatite.

2.4.7 SiO2-Al2O3-CaO-Na2O-K2O-P2O5-F/Y2O3, B2O3 (Apatite and Leucite) -- 2.4.7.1 Fluoroapatite and Leucite -- 2.4.7.2 Oxyapatite and Leucite -- 2.4.8 SiO2-CaO-Na2O-P2O5-F (Rhenanite) -- 2.5 IRON SILICATES -- 2.5.1 SiO2-Fe2O3-CaO -- 2.5.2 SiO2-Al2O3-FeO-Fe2O3-K2O (Mica, Ferrite) -- 2.5.3 SiO2-Al2O3-Fe2O3-(R+)2O-(R2+)O (Basalt) -- 2.6 PHOSPHATES -- 2.6.1 P2O5-CaO (Metaphosphates) -- 2.6.2 P2O5-CaO-TiO2 -- 2.6.3 P2O5-Na2O-BaO and P2O5-TiO2-WO3 -- 2.6.3.1 P2O5-Na2O-BaO System -- 2.6.3.2 P2O5-TiO2-WO3 System -- 2.6.4 P2O5-Al2O3-CaO (Apatite) -- 2.6.5 P2O5-B2O3-SiO2 -- 2.6.6 P2O5-SiO2-Li2O-ZrO2 -- 2.6.6.1 Glass-Ceramics Containing 16 wt% ZrO2 -- 2.6.6.2 Glass-Ceramics Containing 20 wt% ZrO2 -- 2.7 OTHER SYSTEMS -- 2.7.1 Perovskite-Type Glass-Ceramics -- 2.7.1.1 SiO2-Nb2O5-Na2O-(BaO) -- 2.7.1.2 SiO2-Al2O3-TiO2-PbO -- 2.7.1.3 SiO2-Al2O3-K2O-Ta2O5-Nb2O5 -- 2.7.2 Ilmenite-Type (SiO2-Al2O3-Li2O-Ta2O5) Glass-Ceramics -- 2.7.3 B2O3-BaFe12O19 (Barium Hexaferrite) or (BaFe10O15) Barium Ferrite -- 2.7.4 SiO2-Al2O3-BaO-TiO2 (Barium Titanate) -- 2.7.5 Bi2O3-SrO-CaO-CuO -- CHAPTER 3: MICROSTRUCTURE CONTROL -- 3.1 SOLID-STATE REACTIONS -- 3.1.1 Isochemical Phase Transformation -- 3.1.2 Reactions between Phases -- 3.1.3 Exsolution -- 3.1.4 Use of Phase Diagrams to Predict Glass-Ceramic Assemblages -- 3.2 MICROSTRUCTURE DESIGN -- 3.2.1 Nanocrystalline Microstructures -- 3.2.2 Cellular Membrane Microstructures -- 3.2.3 Coast-and-Island Microstructure -- 3.2.4 Dendritic Microstructures -- 3.2.5 Relict Microstructures -- 3.2.6 House-of-Cards Microstructures -- 3.2.6.1 Nucleation Reactions -- 3.2.6.2 Primary Crystal Formation and Mica Precipitation -- 3.2.7 Cabbage-Head Microstructures -- 3.2.8 Acicular Interlocking Microstructures -- 3.2.9 Lamellar Twinned Microstructures -- 3.2.10 Preferred Crystal Orientation -- 3.2.11 Crystal Network Microstructures.

3.2.12 Nature as an Example -- 3.2.13 Nanocrystals -- 3.3 CONTROL OF KEY PROPERTIES -- 3.4 METHODS AND MEASUREMENTS -- 3.4.1 Chemical System and Crystalline Phases -- 3.4.2 Determination of Crystal Phases -- 3.4.3 Kinetic Process of Crystal Formation -- 3.4.4 Determination of Microstructure -- 3.4.5 Mechanical, Optical, Electrical, Chemical, and Biological Properties -- 3.4.5.1 Optical Properties and Chemical Composition of Glass-Ceramics -- 3.4.5.2 Mechanical Properties and Microstructures of Glass-Ceramics -- 3.4.5.3 Electrical Properties -- 3.4.5.4 Chemical Properties -- 3.4.5.5 Biological Properties -- CHAPTER 4: APPLICATIONS OF GLASS-CERAMICS -- 4.1 TECHNICAL APPLICATIONS -- 4.1.1 Radomes -- 4.1.2 Photosensitive and Etched Patterned Materials -- 4.1.2.1 Fotoform® and Fotoceram® -- 4.1.2.2 Foturan® -- 4.1.2.3 Additional Products -- 4.1.3 Machinable Glass-Ceramics -- 4.1.3.1 MACOR® and DICOR® -- 4.1.3.2 Vitronit™ -- 4.1.3.3 Photoveel™ -- 4.1.4 Magnetic Memory Disk Substrates -- 4.1.5 Liquid Crystal Displays -- 4.2 CONSUMER APPLICATIONS -- 4.2.1 β-Spodumene Solid-Solution Glass-Ceramic -- 4.2.2 β-Quartz Solid-Solution Glass-Ceramic -- 4.3 OPTICAL APPLICATIONS -- 4.3.1 Telescope Mirrors -- 4.3.1.1 Requirements for Their Development -- 4.3.1.2 Zerodur® Glass-Ceramics -- 4.3.2 Integrated Lens Arrays -- 4.3.3 Applications for Luminescent Glass-Ceramics -- 4.3.3.1 Cr-Doped Mullite for Solar Concentrators -- 4.3.3.2 Cr-Doped Gahnite Spinel for Tunable Lasers and Optical Memory Media -- 4.3.3.3 Rare-Earth Doped Oxyfluorides for Amplification, Upconversion, and Quantum Cutting -- 4.3.3.4 Chromium (Cr4+)-Doped Forsterite, β-Willemite, and Other Orthosilicates for Broad Wavelength Amplification -- 4.3.3.5 Ni2+-Doped Gallate Spinel for Amplification and Broadband Infrared Sources -- 4.3.3.6 YAG Glass-Ceramic Phosphor for White LED -- 4.3.4 Optical Components.

4.3.4.1 Glass-Ceramics for Fiber Bragg Grating Athermalization -- 4.3.4.2 Laser-Induced Crystallization for Optical Gratings and Waveguides -- 4.3.4.3 Glass-Ceramic Ferrule for Optical Connectors -- 4.3.4.4 Applications for Transparent ZnO Glass-Ceramics with Controlled Infrared Absorbance and Microwave Susceptibility -- 4.4 MEDICAL AND DENTAL GLASS-CERAMICS -- 4.4.1 Glass-Ceramics for Medical Applications -- 4.4.1.1 CERABONE® -- 4.4.1.2 CERAVITAL® -- 4.4.1.3 BIOVERIT® -- 4.4.2 Glass-Ceramics for Dental Restoration -- 4.4.2.1 Moldable Glass-Ceramics for Metal-Free Restorations -- 4.4.2.2 Machinable Glass-Ceramics for Metal-Free Restorations -- 4.4.2.3 Glass-Ceramics on Metal Frameworks -- 4.4.2.4 Glass-Ceramic Veneering Materials on High Toughness Polycrystalline Ceramics -- 4.5 ELECTRICAL AND ELECTRONIC APPLICATIONS -- 4.5.1 Insulators -- 4.5.2 Electronic Packaging -- 4.5.2.1 Requirements for Their Development -- 4.5.2.2 Properties and Processing -- 4.5.2.3 Applications -- 4.6 ARCHITECTURAL APPLICATIONS -- 4.7 COATINGS AND SOLDERS -- 4.8 GLASS-CERAMICS FOR ENERGY APPLICATIONS -- 4.8.1 Components for Lithium Batteries -- 4.8.1.1 Cathodes -- 4.8.1.2 Electrolytes -- 4.8.2 Joining Materials for Solid Oxide Fuel Cell Components -- EPILOGUE: FUTURE DIRECTIONS -- APPENDIX: TWENTY-ONE FIGURES OF 23 CRYSTAL STRUCTURES -- REFERENCES -- INDEX.
Abstract:
Glass-ceramic materials- principles, development, and applications Glass-ceramic materials occupy a unique position in the development of a range of new and versatile technologies. Offering readers a comprehensive overview of the many types of glass-ceramic materials, the methods of their development, and their countless uses across a range of industries, Glass-Ceramic Technology, Second Edition is a must-have resource on a rapidly emerging field of materials science. With applications across many industries, from missile nose cones to cookware to electronic packaging, glass-ceramics are found in virtually all fields where thermo-mechanical properties are most critical. Edited by two leading authorities in the field, Wolfram Höland and George H. Beall, responsible themselves for the development of several of the new materials described in the book, Glass-Ceramic Technology examines the key principles involved in glass-ceramic formation, composition systems, microstructure control, and more. Fully revised and updated to provide cutting-edge coverage of the most recent developments, this Second Edition looks at new high-strength glass-ceramics, new composite materials containing glass-ceramics and high-strength polycrystalline ceramics, new glass-ceramics with special optical properties and new dental materials. The book provides in-depth discussion of development trends, with an emphasis on controlled nucleation and crystallization in specific materials systems, placing a particular emphasis on applications within the medical and dental fields. Designed as a resource for anyone looking to learn more about glass-ceramic materials, their scientific and technological background, and their applications, Glass-Ceramic Technology, Second Edition is essential reading for scientists, engineers, technicians, and students working in the natural and

medical sciences and technology, and related fields.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: