Cover image for Mathematical Horizons for Quantum Physics.
Mathematical Horizons for Quantum Physics.
Title:
Mathematical Horizons for Quantum Physics.
Author:
Araki, Huzihiro.
ISBN:
9789814313322
Personal Author:
Physical Description:
1 online resource (221 pages)
Series:
Lecture Notes Series, Institute for Mathematical Sciences
Contents:
CONTENTS -- Foreword -- Preface -- Control of the Molecular Alignment or Orientation by Laser Pulses Arne Keller -- 1. Introduction - Motivations -- 1.1. Motivations -- 1.2. Experimental methods -- 2. The Model -- 2.1. The free molecule -- 2.2. Molecule-laser interaction -- 2.2.1. Dipole moment interaction -- 2.2.2. Polarizability interaction -- 2.3. Molecular states time dependent evolution -- 2.3.1. Pure state -- 2.3.2. Mixed state -- 2.3.3. Sudden approximation -- 2.4. Alignment or orientation characterization -- 2.4.1. Orientation -- 2.4.2. Alignment -- 3. Control -- 3.1. Control objectives -- 3.2. Control at zero temperature - Pure state control -- 3.2.1. Target states -- 3.2.2. Open questions -- 3.2.3. Strategy of maxima -- 3.2.4. Optimization with an evolutionary algorithm -- 3.3. Control of a thermal ensemble - Mixed state control -- 3.3.1. Target states -- 3.3.2. Strategy of maxima -- 4. Conclusion -- References -- Quantum Computing and Devices: A Short Introduction Zhigang Zhang, Viswanath Ramakrishna and Goong Chen -- 1. Introduction -- 2. A Brief Historical Account, Motivation, and Three Fundamental Principles of Quantum Computing -- 2.1. Spins, the Stern-Gerlach experiment and superposition -- 2.2. Entanglement and the Einstein-Podolsky-Rosen (EPR) Problem -- 2.3. Reversibility and irreversibility, the Landauer principle -- 3. Quantum Computing Devices -- 3.1. The electromagnetic field and its quantization -- 3.2. The interaction between a two-level atom and the optical field -- 3.3. Cavity-QED -- 3.4. Optical lattices -- 3.4.1. Setting up the fields -- 3.4.2. Storing, sorting, and transporting ultra cold neutral atoms using optical latices -- 3.4.3. Entanglement with ultracold atoms in optical lattices -- 4. Universality of Quantum Gates -- 4.1. The Hamiltonian for the cavity-QED system -- 4.2. The coupled quantum dot Hamiltonian.

4.3. An explicit conjugation -- Acknowledgments -- References -- Dynamics of Mixed Classical-Quantum Systems, Geometric Quantization and Coherent States Hans-Rudolf Jauslin and Dominique Sugny -- 1. Introduction -- 2. Hilbert Space Framework of Quantum Dynamics -- 3. Hilbert Space Framework of Classical Dynamics -- 3.1. Koopman-Schr odinger representation -- 3.2. Koopman-Heisenberg representation -- 4. Dynamics of Mixed Classical-Quantum Systems -- 4.1. Example: Stern-Gerlach experiment -- 4.2. Physical interpretation - classical-quantum entanglement -- 5. Berezin-Toeplitz Quantization - Geometric Quantization -- 5.1. Selection of a polarization subspace -- 5.1.1. Construction of a basis of L K -- 5.1.2. Selection of a polarization subspace L LK by the choice of a subset of the basis -- 5.1.3. De nition of an isomorphism between L LK and Fock space -- 5.2. Toeplitz quantization of the observables -- 5.3. Toeplitz quantization of the generators of the dynamics - geometric quantization -- 5.4. Quantization by coherent states -- 5.4.1. Definition of coherent states -- 5.4.2. Construction of the coherent states determined by the selection of a polarization subspace -- 5.4.3. Coherent state quantization of observables -- 5.4.4. Coherent state quantization of the generators of the dynamics -- 6. Dequantization by Coherent States -- 6.0.1. (a) Construction of a phase space manifold from a set of coherent states -- 6.0.2. (b) Construction of the polarization subspace and of the isomorphism from a given set of unnormalized coherent states -- 6.0.3. (c) Dequantization of the observables - covariant and contravariant symbols -- 6.0.4. (d) Dequantization of the Hamiltonian generator of the dynamics -- 7. Conclusions -- Aknowledgments -- References -- Quantum Memories as Open Systems Robert Alicki -- 0. Introduction -- 1. Encoded Qubit.

2. A Generic Model of Classical Memory -- 3. Davies Generators -- 4. Kitaev Models -- 5. Concluding Remarks -- References -- Two Mathematical Problems in Quantum Information Theory Alexander S. Holevo -- 1. Formulation -- 1.1. The additivity problem -- 1.2. The problem of Gaussian optimizers -- 2. Quantum Channels -- 2.1. Additivity and entanglement -- 2.2. Different forms of the additivity property -- 2.3. Nonadditivity of quantum entropy quantities -- 2.4. Infinite-dimensional channels -- 3. Gaussian Systems -- 3.1. Canonical commutation relations, symplectic space and complex structures -- 3.2. Gaussian states and channels -- 3.3. The classical capacity -- Acknowledgments -- References -- Dissipatively Induced Bipartite Entanglement Fabio Benatti -- 1. Introduction -- 2. Two Qubit Master Equation -- 3. Dissipative Entanglement Generation -- 3.1. Persistence of Entanglement -- Appendix -- References -- Scattering in Nonrelativistic Quantum Field Theory Jan Derezi nski -- 1. Introduction -- 2. Basic Abstract Scattering Theory -- 2.1. Moller and scattering operators -- 2.2. Measurement of observables -- 2.3. Physical meaning of the scattering operator -- 2.4. Problem with eigenvalues -- 2.5. Alternative kinds of M ller operators -- 2.7. Other formalisms of scattering theory -- 3. Scattering Theory for 2-Body Schrodinger Operators -- 3.1. Short-range case -- 3.2. Physical meaning of scattering cross-sections -- 3.3. Long-range case -- 3.4. Freedom of the choice of modi ed M ller operators -- 4. Second Quantization -- 4.1. Fock spaces -- 4.2. Creation and annihilation operators -- 4.3. Field and Weyl operators -- 4.4. Wick quantization -- 4.5. Second quantization of operators -- 5. Scattering for Hamiltonians of Quantum Field Theory -- 5.1. QFT Hamiltonians -- 5.2. QFT Hamiltonians that do not polarize vacuum -- 5.3. Ground state.

5.4. Feynman-Dyson approach -- 5.5. The LSZ formalism -- 6. Scattering Theory of Van Hove Hamiltonians -- 6.1. Infra-red case A -- 6.2. Infra-red case B -- 6.3. Infra-red case C -- 6.4. Feynman-Dyson scattering theory for van Hove Hamiltonians -- 6.5. The LSZ formalism for van Hove Hamiltonians -- 7. Representations of the CCR -- 7.1. Definition of a representation of the CCR -- 7.2. Regular representations of the CCR -- 7.3. Creation/annihilation operators associated with a representation of the CCR -- 7.4. The Fock representation -- 7.5. Coherent representations -- 7.6. Coherent sectors -- 7.7. Covariant representations -- 7.8. Coherent sectors of a covariant representation -- 8. Pauli-Fierz Hamiltonians -- 8.1. Definition of Pauli-Fierz Hamiltonians -- 8.2. Spectral properties of Pauli-Fierz Hamiltonians -- 8.3. Scattering theory of Pauli-Fierz Hamiltonians -- 8.4. Asymptotic dynamics -- 8.5. Asymptotic completeness -- 8.6. Relaxation to the ground state -- 8.7. Coherent asymptotic representations -- Acknowledgments -- References -- Mathematical Theory of Atoms and Molecules Volker Bach -- 1. Relative Boundedness and Stability of the First Kind -- 2. Stability of Matter - Stability of the Second Kind -- 3. Hartree-Fock (HF) Theory for Atoms and Molecules -- 4. Bogolubov-Hartree-Fock (BHF) Theory -- Acknowledgment -- References.
Abstract:
Quantum theory is one of the most important intellectual developments in the early twentieth century. The confluence of mathematics and quantum physics emerged arguably from Von Neumann's seminal work on the spectral theory of linear operators. This volume arose from a two-month workshop held at the Institute for Mathematical Sciences at the National University of Singapore in July-September 2008 on mathematical physics, focusing specifically on operator algebras in quantum theory. This volume is essentially written for graduate students and young researchers so that they can acquire a gentle introduction to the application of operator algebras to quantum information sciences, chaotic and many-body problems. Several lecture notes delivered during the workshop by experts in the field were specially commissioned for this volume.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: