Cover image for Fatigue Limit in Metals.
Fatigue Limit in Metals.
Title:
Fatigue Limit in Metals.
Author:
Bathias, Claude.
ISBN:
9781118648711
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (124 pages)
Series:
FOCUS Series
Contents:
Cover -- Title Page -- Contents -- ACKNOWLEDGEMENTS -- CHAPTER 1. INTRODUCTION ON VERY HIGH CYCLE FATIGUE -- 1.1. Fatigue limit, endurance limit and fatigue strength -- 1.2. Absence of an asymptote on the SN curve -- 1.3. Initiation and propagation -- 1.4. Fatigue limit or fatigue strength -- 1.5. SN curves up to 109 cycles -- 1.6. Deterministic prediction of the gigacycle fatigue strength -- 1.7. Gigacycle fatigue of alloys without flaws -- 1.8. Initiation mechanisms at 109 cycles -- 1.9. Conclusion -- 1.10. Bibliography -- CHAPTER 2. PLASTICITY AND INITIATION IN GIGACYCLE FATIGUE -- 2.1. Evolution of the initiation site from LCF to GCF -- 2.2. Fish-eye growth -- 2.2.1. Fracture surface analysis -- 2.2.2. Plasticity in the GCF regime -- 2.3. Stresses and crack tip intensity factors around spherical and cylindrical voids and inclusions -- 2.3.1. Spherical cavities and inclusions -- 2.3.2. Spherical inclusion -- 2.3.3. Mismatched inclusion larger than the spherical cavity it occupies -- 2.3.4. Cylindrical cavities and inclusions -- 2.3.5. Cracking from a hemispherical surface void -- 2.3.6. Crack tip stress intensity factors for cylindrical inclusions with misfit in both size and material properties -- 2.4. Estimation of the fish-eye formation from the Paris-Hertzberg law -- 2.4.1. "Short crack" number of cycles -- 2.4.2. "Long crack" number of cycles -- 2.4.3. "Below threshold" number of cycles -- 2.5. Example of fish-eye formation in a bearing steel -- 2.6. Fish-eye formation at the microscopic level -- 2.6.1. Dark area observations -- 2.6.2. "Penny-shaped area" observations -- 2.6.3. Fracture surface with large radial ridges -- 2.6.4. Identification of the models -- 2.6.5. Conclusion -- 2.7. Instability of microstructure in very high cycle fatigue (VHCF) -- 2.8. Industrial practical case: damage tolerance at 109 cycles.

2.8.1. Fatigue threshold in N18 -- 2.8.2. Fatigue crack initiation of N18 alloy -- 2.8.3. Mechanisms of the GCF of N18 alloy -- 2.9. Bibliography -- CHAPTER 3. HEATING DISSIPATION IN THE GIGACYCLE REGIME -- 3.1. Temperature increase at 20 kHz -- 3.2. Detection of fish-eye formation -- 3.3. Experimental verification of Nf by thermal dissipation -- 3.4. Relation between thermal energy and cyclic plastic energy -- 3.5. Effect of metallurgical instability at the yield point in ultrasonic fatigue -- 3.6. Gigacycle fatigue of pure metals -- 3.6.1. Microplasticity in the ferrite -- 3.6.2. Effect of gigacycle fatigue loading on the yield stress in Armco iron -- 3.6.3. Temperature measurement on Armco iron -- 3.6.4. Intrinsic thermal dissipation in Armco iron -- 3.6.5. Analysis of surface fatigue crack on iron -- 3.7. Conclusion -- 3.8. Bibliography -- INDEX.
Abstract:
Is there a fatigue limit in metals? This question is the main focus of this book. Written by a leading researcher in the field, Claude Bathias presents a thorough and authoritative examination of the coupling between plasticity, crack initiation and heat dissipation for lifetimes that exceed the billion cycle, leading us to question the concept of the fatigue limit, both theoretically and technologically. This is a follow-up to the Fatigue of Materials and Structures series of books previously published in 2011. Contents 1. Introduction on Very High Cycle Fatigue. 2. Plasticity and Initiation in Gigacycle Fatigue. 3. Heating Dissipation in the Gigacycle Regime. About the Authors Claude Bathias is Emeritus Professor at the University of Paris 10-La Defense in France. He started his career as a research engineer in the aerospace and military industry where he remained for 20 years before becoming director of the CNRS laboratory ERA 914 at the University of Compiègne in France. He has launched two international conferences about fatigue: International Conference on the Fatigue of Composite Materials (ICFC) and Very High Cycle Fatigue (VHCF). This new, up-to-date text supplements the book Fatigue of Materials and Structures, which had been previously published by ISTE and John Wiley in 2011. A thorough review of coupling between plasticity, crack priming, and thermal dissipation for lifespans higher than a billion of cycle has led us to question the concept of fatigue limit, from both the theoretical and technological point of view. This book will address that and more.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Electronic Access:
Click to View
Holds: Copies: