Cover image for RF and Microwave Coupled-Line Circuits.
RF and Microwave Coupled-Line Circuits.
Title:
RF and Microwave Coupled-Line Circuits.
Author:
Mongia, R. K.
ISBN:
9781596931572
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (574 pages)
Contents:
RF and Microwave Coupled-Line Circuits Second Edition -- Foreword to the First Edition -- Preface to the Second Edition -- Preface to the First Edition -- Chapter 1 Introduction -- 1.1 Coupled Structures -- 1.1.1 Types of Coupled Structures -- 1.1.2 Coupling Mechanism -- 1.2 Components Based on Coupled Structures -- 1.2.1 Directional Couplers -- 1.2.2 Filters -- 1.3 Applications -- 1.4 Scope of the Book -- References -- Chapter 2 Microwave Network Theory -- 2.1 Actual and Equivalent Voltages and Currents -- 2.1.1 Normalized Voltages and Currents -- 2.1.2 Unnormalized Voltages and Currents -- 2.1.3 Reflection Coefficient, VSWR, and Input Impedance -- 2.1.4 Quantities Required to Describe the State of a Transmission Line -- 2.2 Impedance and Admittance Matrix Representation of a Network -- 2.2.1 Impedance Matrix -- 2.2.2 Admittance Matrix -- 2.2.3 Properties of Impedance and Admittance Parameters of a Passive Network -- 2.3 Scattering Matrix -- 2.3.1 Unitary Property -- 2.3.2 Transformation with Change in Position of Terminal Planes -- 2.3.3 Reciprocal Networks -- 2.3.4 Relationship Between Normalized and Unnormalized Matrices -- 2.4 Special Properties of Two-, Three-, and Four-Port Passive, Lossless Networks -- 2.4.1 Two-Port Networks -- 2.4.2 Three-Port Reciprocal Networks -- 2.4.3 Three-Port Nonreciprocal Networks -- 2.4.4 Four-Port Reciprocal Networks -- 2.5 Special Representation of Two-Port Networks -- 2.5.1 ABCD Parameters -- 2.5.2 Reflection and Transmission Coefficients in Terms of ABCD Parameters -- 2.5.3 Equivalent T and P Networks of Two-Port Circuits -- 2.6 Conversion Relations -- 2.7 Scattering Matrix of Interconnected Networks -- 2.7.1 Scattering Parameters of Reduced Networks -- 2.7.2 Reduction of a Three-Port Network into a Two-Port Network -- 2.7.3 Reduction of a Two-Port Network into a One-Port Network.

2.7.4 Reduction of a Four-Port Network into a Two-Port Network -- References -- Chapter 3 Characteristics of Planar Transmission Lines -- 3.1 General Characteristics of TEM and Quasi-TEM Modes -- 3.1.1 TEM Modes -- 3.1.2 Quasi-TEM Modes -- 3.1.3 Skin Depth and Surface Impedance of Imperfect Conductors -- 3.1.4 Conductor Loss of TEM and Quasi-TEM Modes -- 3.2 Representation of Capacitances of Coupled Lines -- 3.2.1 Even- and Odd-Mode Capacitances of Symmetrical Coupled Lines -- 3.2.2 Parallel-Plate and Fringing Capacitances of Single and Coupled Planar Transmission Lines -- 3.3 Characteristics of Single and Coupled Striplines -- 3.3.1 Single Stripline -- 3.3.2 Edge-Coupled Striplines -- 3.4 Characteristics of Single and Coupled Microstrip Lines -- 3.4.1 Single Microstrip -- 3.4.2 Coupled Microstrip Lines -- 3.5 Single and Coupled Coplanar Waveguides -- 3.5.1 Coplanar Waveguide -- 3.5.2 Coplanar Waveguide with Upper Shielding -- 3.5.3 Conductor-Backed Coplanar Waveguide with Upper Shielding -- 3.5.4 Coupled Coplanar Waveguides -- 3.6 Suspended and Inverted Microstrip Lines -- 3.7 Broadside-Coupled Lines -- 3.7.1 Broadside-Coupled Striplines -- 3.7.2 Broadside-Coupled Suspended Microstrip Lines -- 3.7.3 Broadside-Coupled Offset Striplines -- 3.8 Slot-Coupled Microstrip Lines -- References -- Chapter 4 Analysis of Uniformly Coupled Lines -- 4.1 Even- and Odd-Mode Analysis of Symmetrical Networks -- 4.1.1 Even-Mode Excitation -- 4.1.2 Odd-Mode Excitation -- 4.2 Directional Couplers Using Uniform Coupled Lines -- 4.2.1 Forward-Wave (or Codirectional) Directional Couplers -- 4.2.2 Backward-Wave Directional Couplers -- 4.3 Uniformly Coupled Asymmetrical Lines -- 4.3.2 Distributed Equivalent Circuit of Coupled Lines -- 4.3.3 Relation Between Normal Mode (c and p ) and Distributed Line Parameters.

4.3.4 Approximate Distributed Line or Normal-Mode Parameters of Asymmetrical Coupled Lines -- 4.4 Directional Couplers Using Asymmetrical Coupled Lines -- 4.4.1 Forward-Wave Directional Couplers -- 4.4.2 Backward-Wave Directional Couplers -- 4.5 Design of Multilayer Couplers -- 4.5.1 Determination of Capacitance and Inductance Parameters Using Sonnet Lite -- 4.5.2 Coupler Design -- References -- Chapter 5 Broadband Forward-Wave Directional Couplers -- 5.1 Forward-Wave Directional Couplers -- 5.1.1 3-dB Coupler Using Symmetrical Microstrip Lines -- 5.1.2 Design and Performance of 3-dB Asymmetrical Couplers -- 5.1.3 Ultra-Broadband Forward-Wave Directional Couplers -- 5.2 Coupled-Mode Theory -- 5.2.1 Nature of Coupling Coefficients K12 and K21 -- 5.2.2 Waves on Lines 1 and 2 in the Presence of Coupling -- 5.2.3 Coupled-Mode Theory and Even- and Odd-Mode Analysis -- 5.2.4 Coupling Between Asymmetrical Lines -- 5.3 Coupled-Mode Theory for Weakly Coupled Resonators -- References -- Chapter 6 Parallel-Coupled TEM DirectionalCouplers -- 6.1 Coupler Parameters -- 6.2 Single-Section Directional Coupler -- 6.2.1 Frequency Response -- 6.2.3 Compact Couplers -- 6.2.4 Equivalent Circuit of a Quarter-Wave Coupler -- 6.3 Multisection Directional Couplers -- 6.3.1 Theory and Synthesis -- 6.3.2 Limitations of Multisection Couplers -- 6.4 Techniques to Improve Directivity of Microstrip Couplers -- 6.4.1 Lumped Compensation -- 6.4.2 Use of Dielectric Overlays -- 6.4.3 Use of Wiggly Lines -- 6.4.4 Other Techniques -- References -- Chapter 7 Nonuniform Broadband TEM Directional Couplers -- 7.1 Symmetrical Couplers -- 7.1.1 Coupling in Terms of Even-Mode Characteristic Impedance -- 7.1.2 Synthesis -- 7.1.3 Technique for Determining Weighting Functions -- 7.1.4 Electrical and Physical Length of a Coupler -- 7.1.5 Design Procedure -- 7.2 Asymmetrical Couplers -- References.

Chapter 8 Tight Couplers -- 8.1 Introduction -- 8.2 Branch-Line Couplers -- 8.2.1 Modified Branch-Line Coupler -- 8.2.2 Reduced-Size Branch-Line Coupler -- 8.2.3 Lumped-Element Branch-Line Coupler -- 8.2.4 Broadband Branch-Line Coupler -- 8.3 Rat-Race Coupler -- 8.3.1 Modified Rat-Race Coupler -- 8.3.2 Reduced-Size Rat-Race Coupler -- 8.3.3 Lumped-Element Rat-Race Coupler -- 8.4 Multiconductor Directional Couplers -- 8.4.1 Theory of Interdigital Couplers -- 8.4.2 Design of Interdigital Couplers -- 8.5 Tandem Couplers -- 8.6 Multilayer Tight Couplers -- 8.6.1 Broadside Couplers -- 8.6.2 Re-Entrant Mode Couplers -- 8.7 Compact Couplers -- 8.7.1 Lumped-Element Couplers -- 8.7.2 Spiral Directional Couplers -- 8.7.3 Meander Line Directional Coupler -- 8.8 Other Tight Couplers -- References -- Chapter 9 Coupled-Line Filter Fundamentals -- 9.1 Introduction -- 9.1.1 Types of Filters -- 9.1.2 Applications -- 9.2 Theory and Design of Filters -- 9.2.1 Maximally Flat or Butterworth Prototype -- 9.2.2 Chebyshev Response -- 9.2.3 Other Response-Type Filters -- 9.2.4 LC Filter Transformation -- 9.2.5 Filter Analysis and CAD Methods -- 9.2.6 Some Practical Considerations -- 9.3 Parallel-Coupled Line Filters -- 9.3.1 Design Example -- 9.4 Interdigital Filters -- 9.4.1 Design Examples -- 9.5 Combline Filters -- 9.5.1 Design Example -- 9.6 The Hairpin-Line Filter -- 9.6.1 Design Example -- 9.7 Parallel-Coupled Bandstop Filter -- 9.7.1 Design Example -- References -- Chapter 10 Advanced Coupled-Line Filters -- 10.1 Introduction -- 10.2 Coupled-Line Filters with Enhanced Stopband Performance -- 10.2.1 Design Using Unevenly-Coupled Stages -- 10.2.2 Design Using Periodically Nonuniform Coupled Lines -- 10.2.3 Design Using Meandered Parallel-Coupled Lines -- 10.2.4 Design Using Defected Ground Structures.

10.3 Coupled-Line Filters Exhibiting Advanced Filtering Characteristics -- 10.3.1 Filters with Cross-Coupled Resonators -- 10.3.2 Filters with Source-Load Coupling -- 10.3.3 Filters with Asymmetric Port Excitations -- 10.4 Interdigital Filters Using Stepped Impedance Resonators -- 10.4.1 Narrowband Design -- 10.4.2 Wideband Design -- 10.5 Dual-Band Filters -- References -- Chapter 11 Filters Using Advanced Materials and Technologies -- 11.1 Introduction -- 11.2 Superconductor Coupled-Line Filters -- 11.2.1 Cascaded Quadruplet and Triplet Filters -- 11.2.2 High-Order Selective Filters with Group-Delay Equalization -- 11.3 Micromachined Filters -- 11.3.1 Miniature Interdigital Filters on Silicon -- 11.3.2 Overlay Coupled CPW Filters -- 11.4 Filters Using Advanced Dielectric Materials -- 11.4.1 Low-Temperature Cofired Ceramic Filters -- 11.4.2 Liquid Crystal Polymer Filters -- 11.5 Filters for Ultra-Wideband (UWB) Technology -- 11.5.1 Optimum Stub Line Filters -- 11.5.2 Multimode Coupled-Line Filters -- 11.5.3 Microstrip-Coplanar Waveguide Coupled-Line Filters -- 11.5.4 UWB Filters with Notch Band -- 11.6 Metamaterial Filters -- References -- Chapter 12 Coupled-Line Circuit Components -- 12.1 DC Blocks -- 12.1.1 Analysis -- 12.1.2 Broadband DC Block -- 12.1.3 Biasing Circuits -- 12.1.4 Millimeter-Wave DC Block -- 12.1.5 High-Voltage DC Block -- 12.2 Coupled-Line Transformers -- 12.2.1 Open-Circuit Coupled-Line Transformers -- 12.2.2 Transmission Line Transformers -- 12.3 Interdigital Capacitor -- 12.3.1 Approximate Analysis -- 12.3.2 Full-Wave Analysis -- 12.4 Spiral Inductors -- 12.5 Spiral Transformers -- 12.6 Other Coupled-Line Components -- References -- Chapter 13 Baluns -- 13.1 Introduction -- 13.2 Microstrip-to-Balanced Stripline Balun -- 13.3 Analysis of a Coupled-Line Balun -- 13.4 Planar Transmission Line Baluns -- 13.4.1 Analysis.

13.4.2 Examples.
Abstract:
This extensively revised edition of the 1999 Artech House classic, RF and Microwave Coupled-Line Circuits, offers you a thoroughly up-to-date understanding of coupled line fundamentals, explaining their applications in designing microwave and millimeter-wave components used in today's communications, microwave, and radar systems. The Second Edition includes a wealth of new material, particularly relating to applications. You find brand new discussions on a novel simple design technique for multilayer coupled circuits, high pass filters using coupled lines, software packages used for filter design, design of elliptic response microstrip filters, and advanced filters using new materials and technologies.This unique book provides you with a thorough understanding of stripline, microstrip, monolithic, and coplanar technologies. Emphasizing design, analysis, and modern fabrication techniques and practices, it provides invaluable knowledge and guidance in helping you develop compact and low-cost design solutions and components such as loose and tight couplers, filters, hybrids, transformers, and baluns. Featuring more than 1100 equations, this comprehensive book serves as a consolidated resource of classic and cutting-edge information on coupled structures.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: