Cover image for Molecules at Work : Selfassembly, Nanomaterials, Molecular Machinery.
Molecules at Work : Selfassembly, Nanomaterials, Molecular Machinery.
Title:
Molecules at Work : Selfassembly, Nanomaterials, Molecular Machinery.
Author:
Pignataro, Bruno.
ISBN:
9783527645817
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (417 pages)
Contents:
Molecules at Work -- Contents -- Preface -- List of Contributors -- Part I Self Assembly -- 1 Yoctoliter-Sized Vessels as Potential Biological Models -- 1.1 Introduction -- 1.2 Cavities on Glass Plates and Gold Surfaces -- 1.3 Preparation and Confirmation of Rigid Yoctowell Cavity -- 1.3.1 Confirmation of Rigid Gaps -- 1.4 Molecular Sorting -- 1.5 Yoctowell-Based Molecular Recognition Events -- 1.6 Conclusion -- Acknowledgments -- References -- 2 Switchable Host-Guest Interactions of Supramolecular Rings and Cages -- 2.1 Introduction -- 2.2 Host-Guest Chemistry -- 2.3 Switching in Supramolecular Systems -- 2.4 Natural Paragons -- 2.5 Types of External Input and Methods for Analysis -- 2.5.1 Switchable Host Compounds -- 2.5.2 Switchable Guest Compounds -- 2.6 Conclusion -- References -- Part II NanoMaterials -- 3 Tailored Graphene-Type Molecules by Chemical Synthesis -- 3.1 Introduction -- 3.2 Synthetic Concepts toward Expanded PAHs - Nanographenes -- 3.2.1 Hexabenzocoronenes (HBCs) and Related Systems -- 3.2.2 Large PAHs -- 3.2.3 Graphene Nanoribbons -- 3.2.4 Heteroatom-Containing PAHs -- 3.3 Conclusion and Outlook -- References -- 4 Analyzing the Surface Area Properties of Microporous Materials -- 4.1 Introduction -- 4.1.1 Energy -- 4.1.2 H2 Storage -- 4.1.3 CO2 Capture and Sequestration -- 4.1.4 Gas Separation -- 4.2 Microporous Materials -- 4.2.1 Framework Materials -- 4.2.2 Network Materials -- 4.2.3 Molecular Materials -- 4.2.4 Structural Flexibility -- 4.3 Porosity -- 4.3.1 What Is Porosity? -- 4.3.2 Intrinsic versus Extrinsic Porosity -- 4.3.3 Measuring Porosity -- 4.3.4 Calculated Surface Areas and Simulated Gas Uptakes -- 4.3.5 Gas-Diffusion Mechanisms -- 4.4 Porous Materials and Calculating Surface Areas -- 4.4.1 Framework Materials -- 4.4.2 Network Materials -- 4.4.3 Molecular Materials.

4.4.4 Molecular Solids with Some Extrinsic Porosity -- 4.4.5 Molecular Solids with Intrinsic Porosity -- 4.5 Summary -- Acknowledgments -- References -- 5 Nanostructured Materials Based on Core-Substituted Naphthalene Diimides -- 5.1 Introduction -- 5.2 Synthesis of Novel cNDI Derivatives -- 5.3 Electron Transfer -- 5.4 Supramolecular Self-Assembly of cNDI -- 5.5 Conclusion -- Acknowledgments -- References -- 6 Metal Phosphides: From Chemist's Oddities to Designed Functional Materials -- 6.1 Introduction -- 6.2 Bulk Metal Phosphides: A Long History -- 6.2.1 A New Family of Synthetic Inorganic Materials -- 6.2.2 First Set of Applications -- 6.2.3 Bulk Metal Phosphides and Today's Applications -- 6.3 White Phosphorus for the Low-Temperature Synthesis of Metal Phosphide Nanoparticles -- 6.3.1 White Phosphorus as a Low-Temperature Reagent -- 6.3.2 Aryl- and Alkyl-Phosphines as ''P'' Atom Donor in Harsh Conditions for the Synthesis of Metal Phosphide Nanoparticles -- 6.3.3 Nickel Phosphide Nanoparticles from P4 in Stoichiometric and Mild Conditions -- 6.3.4 Generalization of the White Phosphorus Nanoscale Route -- References -- 7 ''Artificial Supermolecule'': Progress in the Study of II-V Colloidal Semiconductor Nanocrystals -- 7.1 Introduction -- 7.2 Optical Properties of II-V Nanocrystals -- 7.2.1 Absorption -- 7.2.2 Photoluminescence -- 7.2.3 Lifetime Measurement -- 7.3 Synthesis of II-V Nanocrystals -- 7.3.1 Synthesis Methods -- 7.3.2 Synthesis of Cd3P2 Nanocrystals -- 7.3.2.1 ''Hot-Injection'' Synthesis -- 7.3.2.2 High-Temperature, Gas-Bubbling Synthesis with Ex Situ-Produced PH3 -- 7.3.3 Synthesis of Zn3P2 Nanocrystals -- 7.3.4 Synthesis of Cd3As2 Nanocrystals -- 7.3.5 Summary of the Synthesis of II-V Nanocrystals -- 7.4 Conclusions and Outlook -- References -- 8 Luminescent Dendrimers -- 8.1 Introduction.

8.2 Intrinsic Photochemical and Photophysical Properties of Organic Dendrimers -- 8.3 Energy Transfer and Energy Upconversion in Multichromophoric Dendrimers -- 8.4 Dendrimers as Ligands for Metal Ions -- 8.5 Self-Assembly -- 8.6 Dendrimers as Photoswitchable Hosts -- 8.7 Conclusion and Perspectives -- References -- 9 Fabrication of Ultramicroporous Silica Membranes for Pervaporation and Gas Separation -- 9.1 Ultramicroporous Silica Membranes -- 9.1.1 Context -- 9.1.2 Gas Separation and Pervaporation -- 9.1.3 Fabrication -- 9.1.4 Microporosity Assessment in Silica Membranes -- 9.1.5 Hydrothermal Stability-Instability of Microporous Silica -- 9.2 MxOy -Silica Membrane -- 9.2.1 Fabrication -- 9.2.2 Stability, Selectivity, and Reactivity -- 9.2.3 Membrane Optimization -- 9.3 Hybrid Organic-Silica Membranes -- 9.3.1 Fabrication -- 9.3.2 ''Hydrophobic'' Silica Membranes -- 9.3.3 Membranes from Bridged Organosilanes -- 9.3.4 Organic-Silica Membranes for CO2 Separation -- 9.4 Perspectives in the Fabrication and Application of Silica Membranes -- References -- 10 New Directions in the Fight against Cancer: From Metal Complexes to Nanostructured Materials -- 10.1 Introduction -- 10.2 Metal Complexes in Cancer Treatment -- 10.2.1 Platinum Complexes -- 10.2.2 Non-Platinum Transition-Metal Complexes -- 10.2.2.1 Group 4 Metal Complexes -- 10.2.2.2 Group 8 Metal Complexes -- 10.2.2.3 Group 11 Metal Complexes -- 10.2.3 Main Group-Metal Complexes -- 10.2.3.1 Gallium Complexes -- 10.2.3.2 Tin Complexes -- 10.3 Nanostructured Materials in Cancer Treatments -- 10.3.1 Macromolecular Systems -- 10.3.1.1 Cucurbit[n]urils and Cyclodextrins -- 10.3.1.2 Liposomes and Lipid Nanocapsules -- 10.3.1.3 Other Macromolecular Systems -- 10.3.2 Ceramic Materials -- 10.3.2.1 Nanostructured Calcium-Phosphate-Based Materials Functionalized with Metal Complexes.

10.3.2.2 Mesoporous Silicas Functionalized with Metal Complexes -- 10.3.2.3 Carbon Nanotubes Functionalized with Metal Complexes -- 10.3.3 Nanoparticles -- References -- Part III Molecular Machinery -- 11 Molecular Rotors: Imaging Intracellular Viscosity -- 11.1 Introduction -- 11.2 Theoretical Background -- 11.3 Biological Applications of Molecular Rotors -- 11.3.1 Fluorescence-Lifetime-Based Molecular Rotors -- 11.3.2 Time-Resolved Fluorescence Anisotropy Measurements of Molecular Rotors -- 11.3.3 Ratiometric Fluorescent Molecular Rotors -- 11.3.4 Ratiometric Molecular Rotor Measurements of Viscosity during PDT -- 11.4 Conclusions and Outlook -- Acknowledgments -- References -- 12 Surface-Functionalized Inorganic Colloidal Nanocrystals in Functional Nanocomposite Materials for Microfabrication -- 12.1 Introduction -- 12.2 Colloidal Nanocrystals: Properties, Synthesis, and Surface Functionalization -- 12.2.1 Properties of Nanocrystals -- 12.2.2 Colloidal Synthesis of Nanocrystals -- 12.2.3 Surface Functionalization of Nanocrystals -- 12.3 NC-Based Nanocomposites for Microfabrication -- 12.4 Conclusions and Future Perspectives -- References -- 13 Fluorescence Sensing of Temperature and Oxygen with Fullerenes -- 13.1 Introduction -- 13.2 Thermally Activated Delayed Fluorescence: Fundamental Aspects -- 13.3 Sensing Applications -- 13.3.1 Oxygen Sensing -- 13.3.1.1 Sub-ppm Oxygen Sensor Based on C70 -- 13.3.1.2 C70 in a Dual Sensor System -- 13.3.2 Temperature Sensing -- 13.3.2.1 C70 Dispersed in Polymer Films -- 13.3.2.2 C70 Encapsulated in Polymer Nanoparticles -- 13.4 Conclusions and Future Perspectives -- Acknowledgments -- References -- 14 Going beyond Glucose Sensing with Boronic Acid Receptors -- 14.1 Introduction -- 14.2 Indicator Displacement Assays for the Detection of Sugars -- 14.3 Glucose Sensing with Boronic Acid Receptors.

14.3.1 Allosteric Indicator Displacement Assay for the Detection of Carbohydrates -- 14.3.2 AIDA Saccharide Sensing System - Boronic-Acid-Appended Benzyl Bipyridinum Salts and a Fluorescent Reporter Dye -- 14.3.3 AIDA Glucose Sensor for Continuous Monitoring -- 14.4 Solution-Phase Sensor Arrays with Boronic-Acid-Appended Bipyridinium Salts -- 14.4.1 Recognition of Neutral Saccharides -- 14.4.2 Recognition of Phosphosugars and Nucleotides -- 14.5 Carbohydrate-Active Enzyme Assays -- 14.6 Boronic-Acid-Appended Bipyridinium Salts at Work - NOVOSIDES -- 14.7 Conclusions and Perspectives -- Acknowledgments -- References -- 15 Design of Novel Iridium Complexes to Obtain Stable and Efficient Light-Emitting Electrochemical Cells -- 15.1 Brief History of Electroluminescence and Optoelectronic Devices -- 15.2 Light-Emitting Electrochemical Cells: Motivation and Definition -- 15.3 Ionic Transition-Metal Complexes Based on Ir(III) Metal Core for LECs -- 15.4 Strategies to Design Iridium(III) Complexes for Highly Efficient LECs -- 15.5 Strategies to Design Iridium(III) Complexes for Highly Stable LECs -- 15.6 Outlook and Conclusions -- Acknowledgments -- References -- 16 Photochemically Driven Molecular Devices and Machines -- 16.1 Introduction -- 16.1.1 Features of Molecular Devices and Machines -- 16.2 Switches and Logic Gates -- 16.3 Molecular Machines -- 16.3.1 Threading-Dethreading Motions -- 16.3.2 Molecular Shuttles -- 16.4 Conclusions -- Acknowledgments -- References -- Index.
Abstract:
This book contains the contributions of selected young chemists from the field of nanotechnology and material sciences. The contributions are grouped under the following umbrella topics: Self assembly Nanomaterials Molecular Machinery This volume is an indispensable read for all materials scientists, organic, and inorganic chemists, Ph.D. students in chemistry and material sciences interested in seeing what tomorrow's chemistry will look like.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Electronic Access:
Click to View
Holds: Copies: