Cover image for Nanoparticles : Properties, Classification, Characterization, and Fabrication.
Nanoparticles : Properties, Classification, Characterization, and Fabrication.
Title:
Nanoparticles : Properties, Classification, Characterization, and Fabrication.
Author:
Kestell, Aiden E.
ISBN:
9781617618062
Personal Author:
Physical Description:
1 online resource (367 pages)
Series:
Nanotechnology Science and Technology
Contents:
NANOPARTICLES: PROPERTIES, CLASSIFICATION, CHARACTERIZATION, AND FABRICATION -- NANOPARTICLES: PROPERTIES, CLASSIFICATION, CHARACTERIZATION, AND FABRICATION -- CONTENTS -- PREFACE -- Chapter 1 NANOSTRUCTURED MATERIALS: CLASSIFICATION, PROPERTIES, FABRICATION, CHARACTERIZATION AND THEIR APPLICATIONS IN BIOMEDICAL SCIENCES -- INTRODUCTION -- 2. CLASSIFICATION OF NANOSTRUCTURED -- 3. PROPERTIES OF NANOSTRUCTURED MATERIALS -- 3.1. Mechanical Properties -- 3.1.1. Hardness -- 3.1.2. Thermal stability -- 3.1.3. Tensile strength and fracture -- 3.2. Transport Properties -- 3.2.1 Ionic and electronic conductivity -- 3.2.2. Effects of particle size and doping on electrical conductivity -- 3.3. Electronic Properties -- 3.3.1. Indirect semiconductors -- 3.4. Magnetic Properties -- 3.4.1. Magnetism of multi and single domain particles -- 3.4.2. Superparamagnetism -- 3.5. Catalytic Properties -- 3.5.1. Particle size dependence of surface processes -- 3.5.2. Adsorption -- 3.5.3. Diffusion and desorption -- 3.5.4. Work function -- 3.5.5. Bond breaking -- 3.5.6. Charge transfer -- 3.6. Oxides in Three-Way Catalysts -- 4. PREPARATION OF NANOSTRUCTURED MATERIALS -- 4.1. Physical Vapor Deposition -- 4.1.1. Thermal evaporation -- 4.1.2. Rf magnetron sputtering -- 4.1.3. Pulsed laser deposition -- 4.2. Chemical Vapor Deposition -- 4.2.1. Thermal and low pressure chemical vapor deposition -- 4.2.2. Plasma-enhanced chemical vapor deposition -- 4.2.3. Metal-organic chemical vapor deposition -- 4.2.4. Molecular beam epitaxy -- 4.2.5. Atomic layer deposition -- 4.3. Solution-Based Chemistry -- 4.3.1. Sol-gel method -- 4.3.2. Sonochemical method -- 4.3.3. Solvothermal method -- 4.3.4. Hydrothermal synthesis -- 4.3.5. Homogeneous/heterogeneous precipitation -- 4.3.6. Co-precipitation methods for metal oxide synthesis -- 4.3.7. Micro-emulsion method.

4.3.8. Template-assisted synthesis methods -- 4.3.9. Electrochemical synthesis -- 4.3.10. Electrophoretic deposition (EPD) -- 4.4. Miscellenious Methods (High-Energy Ball Milling) -- 5. CHARACTERIZATION OF NANOSTRUCTURED MATERIALS -- 5.1. X-ray Diffraction -- 5.2. X-Ray Photoelectron Spectroscopy -- 5.3. X-Ray Absorption Spectroscopy (XAS) -- 5.4. Electron Paramagnetic Resonance Spectroscopy -- 5.5. Energy Dispersive X-Ray Spectroscopy -- 5.6. Electron microscopy -- 5.6.1. Scanning electron microscopy (SEM) -- 5.6.2. Transmission electron microscopy (TEM) -- 5.7. Scanning Probe Microscopy (SPM) -- 5.8. Raman / Infrared Spectroscopy -- 5.9. UV-Vis Spectroscopy -- 5.10. Photoluminescence -- 5.11. Fluorescent Microscopy -- 5.12. Cyclic Voltammetry -- 5.13. Electrochemical Impedance Spectroscopy (EIS) -- 6. NANO-STRUCTURED MATERIALS FOR BIOMEDICAL APPLICATIONS -- 6.1. Biosensors -- 6.1.1. Colorimetric sensors -- 6.1.2. Acoustic wave based piezoelectric sensors -- 6.1.3. Conductometric biosensors -- 6.1.4. Calorimetric biosensors -- 6.1.5. Electrochemical sensors -- 6.1.6. Amperometric sensors -- 6.1.7. Potentiometric sensors -- 6.1.8. Electrochemical impedance spectroscopy (EIS) -- 6.1.9. Surface plasmon resonance sensors -- 6.1.10. Fluorescence sensors -- 6.1.11. Other sensing methods -- 6.2. Bioimaging, Bio-Labeling, Biomarker -- 6.2.1. Optical imaging -- 6.2.2. Magnetic resonance imaging -- 6.3. Drug Delivery -- 7. CONCLUSION AND FUTURE PROSPECTS -- REFERENCES -- Chapter 2 SEMICONDUCTOR NANOPARTICLES IN PHOTOCATALYSIS: THE PRESENT STATUS AND PERSPECTIVES -- ABSTRACT -- INTRODUCTION -- 1. SIZE EFFECTS IN SEMICONDUCTOR NANOCRYSTALS -- 1.1. Classification of the Size Effects in Semiconductor Nanocrystals -- 1.2. Light Absorption by Semiconductor Nanocrystals -- 1.3 Photoluminescence of Semiconductor NPs.

1.4 Burstein-Moss Effect and Photoinduced Polarization of Semiconductor NPs -- 2. SIZE EFFECTS IN THE PHOTOCHEMISTRY OF SEMICONDUCTOR NPs -- 2.1 Surface Trapping and Interfacial Transfer of Charge Carriers -- 2.2 Size Effects in the Photocatalytic Reactions With Semiconductor NPs -- 2.3. Photocatalytic Processes with the Participation of Photopolarized Semiconductor NPs -- 2.4 Semiconductor Nanoheterostructures with Advanced Photocatalytic Properties -- CONCLUSION -- OUTLOOK -- REFERENCES -- Chapter 3 NANOPARTICLE SYNTHESIS BY THERMAL PLASMAS -- ABSTRACT -- 1. INTRODUCTION -- 2. CHARACTERISTICS OF THERMAL PLASMAS -- 2.1. Fundamental Processes in Thermal Plasmas -- 2.2. Induction Thermal Plasmas -- 2.3. DC Plasmas -- 3. EXPERIMENTAL RESEARCH OF ITP-AIDED NANOPARTICLE SYNTHESIS -- 3.1 Intermetallic Compound and Alloy Nanoparticle -- 3.2 Ferrite Nanoparticle -- 3.3 Boride Nanoparticle -- 3.3.1 Thermodynamic consideration -- 3.3.2. Experimental -- 3.3.3. Discussion -- 3.4 Silicide Nanoparticle -- 3.4.1. Experimental -- 3.5 Carbide Nanoparticle -- 3.5.1. Silicon carbide -- 3.5.2. Tantalum carbide -- 3.5.3. Tungsten carbide -- 3.6 Nitride Nanoparticle -- 3.6.1. Titanium nitride -- 3.6.2. Silicon nitride -- 3.6.3. Aluminum nitride -- 3.7 Oxide Nanoparticle -- 3.7.1. Experimental -- 4. MODELING OF ITP-AIDED NANOPARTICLE SYNTHESIS -- 4. 1 Fundamental Mechanism -- 4. 2 Model Description and Numerical Results -- 4.2.1. Induction thermal plasma -- 4.2.2. Behavior of the precursory powders -- 4.2.3. Nanoparticle formation -- (I) Moment method -- (II) Multicomponent cocondensation model - fundamental -- (III) Multicomponent cocondensation model - improved -- Nodal discretization of a particle size distribution -- Homogeneous nucleation -- Coagulation between nanoparticles -- Heterogeneous cocondensation -- Monomer balance -- CONCLUSION -- REFERENCES.

Chapter 4 TIO2 NANOPARTICLES: TRADITIONAL AND NOVEL SYNTHETIC METHODS FOR PHOTOCATALYTIC PAINT FORMULATIONS -- ABSTRACT -- 1. INTRODUCTION -- 2. NANOTITANIA SYNTHETIC ROUTES -- 2.1 Combustion Synthesis -- 2.2 Precipitation Methods -- 2.3 Sol-Gel Techniques -- 2.4 Solvothermal Methods -- 2.5 Microwave and Ultrasound Treatments -- 2.5.1 Microwave heating -- 2.5.2 Ultrasound growth -- 3. PHOTOCATALYTIC PAINTS -- 3.1 Photostability of Organic Components in Paint -- 3.2 Photocatalytic Activity of Paint Coatings -- 4. CONCLUSION -- REFERENCES -- Chapter 5 MORPHOLOGY CHANGES IN CARBON NANOPARTICLES DUE TO DIFFERENT ATOM ARRANGEMENTS -- ABSTRACT -- INTRODUCTION -- REFERENCES -- Chapter 6 GOLD NANOPARTICLE LABELLED DNA HAIRPIN GRAFTING ON TRANSPARENT AND CONDUCTIVE OXIDE (TCO) FILMS: CHARACTERIZATION OF GRAFTING AND HYBRIDIZATION -- ABSTRACT -- I. INTRODUCTION -- I-1. Biochips: Interest and DNA Characteristics -- I-2. Molecular Beacons -- I-3. Solid Surface: Oxide Films -- II EXPERIMENTAL -- II-1. Thin Film Oxide Deposition and Functionalization -- II-1-a. Deposition -- II-1-a-1. SiO2 films -- II-1-a-2. Sb doped SnO2 films -- II-1-a-3. ITO films -- II -1-b. Functionalization -- II-2 Molecular Beacon and Target Fabrication -- II-2-a molecular beacon -- II-2-a-1. Gold nanoparticle -- II-2-a-2. Hairpin probes -- II-2-a-3. Au enhancement procedure -- II-2-b. Synthesis of target -- II-3. Molecular Beacons: Grafting, Hybridization and Denaturation -- II-4. Characterization Techniques -- II-4-a. Morphology -- II-4-a-1. TEM -- II-4-a-2. Sem feg -- II-4-b. Topography Using AFM -- II-4-c. Physico-Chemical Characterizations -- II-4-c-1. XPS -- II-4-c-2. ToF-SIMS -- II-4-d. Fluorescence -- III RESULTS -- III-1. Bare Oxide Film Characteristics -- III-1-a. Insulating SiO2 films -- III-1-b. Conductive ITO films -- III-1-c. Conductive Sb doped SnO2 films.

III-2. Oxide Films after Biomodification Steps -- III-2-a. Functionalization step -- III-2-a-1. Microscopy techniques -- III-2-a-2. Spectroscopy techniques -- III-2-b. Grafting Step for DNA Molecular Beacons -- III-2-b.1 Microscopy techniques -- III-2-b-2. Spectroscopy techniques -- III-2-c. Hybridization Step -- III-2-c-1. Microscopy techniques -- Optical microscopy and electronic microscopy -- Fluorescence microscopy -- III-2-a-1. Spectroscopy techniques -- XPS analyses -- ToF-sims -- III-2-d. Denaturation Step -- III-2-c-1. Microscopy techniques -- III-2-c-2. Spectroscopy techniques -- IV. DISCUSSION -- V. CONCLUSIONS -- REFERENCES -- Chapter 7 SYNTHESIS AND OPTICAL PROPERTIES OF POLYMER FUNCTIONALIZED INORGANIC NANOPARTICLES -- ABSTRACT -- 1. INTRODUCTION -- EXPERIMENTAL DETAILS -- 2.1 Materials -- 2.2 Preparation of Polymer/Inorganic Nanoparticles -- 2.3 Characterizations -- 3. RESULTS -- 3.1 Photoluminescence from PMMA Coated Nanopartilces Synthesized Through Electron Irradiation -- 3.2 Photoluminescence from PMMA Coated Nanopartilces Synthesized through Γ Irradiation -- 3.2 Annealing Induced the Decrease of Luminescence Density -- 4. CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- INDEX.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: