Cover image for Characterization Techniques for Polymer Nanocomposites.
Characterization Techniques for Polymer Nanocomposites.
Title:
Characterization Techniques for Polymer Nanocomposites.
Author:
Mittal, Vikas.
ISBN:
9783527654536
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (380 pages)
Series:
Polymer Nano-, Micro- and Macrocomposites Ser.
Contents:
Characterization Techniques for Polymer Nanocomposites -- Contents -- Preface -- List of Contributors -- 1: Characterization of Nanocomposite Materials: An Overview -- 1.1 Introduction -- 1.2 Characterization of Morphology and Properties -- 1.3 Examples of Characterization Techniques -- References -- 2: Thermal Characterization of Fillers and Polymer Nanocomposites -- 2.1 Introduction -- 2.2 TGA of Fillers -- 2.2.1 Quantification of the Extent of Surface Modification -- 2.2.2 Cleanliness of the Filler Surface -- 2.2.3 Comparing the Stability of Different Fillers -- 2.2.4 Dynamic TGA Analysis of the Fillers -- 2.2.5 Characterization of the Surface Reactions -- 2.2.6 Different Measurement Environments -- 2.2.7 Correlation of Organic Matter with Basal Spacing -- 2.3 TGA of Polymer Nanocomposites -- 2.3.1 Effect of Filler Concentration -- 2.3.2 Effect of Compatibilizer -- 2.4 DSC of Fillers -- 2.4.1 Thermal Transitions in the Modified Fillers -- 2.5 DSC of Composites -- 2.5.1 Transitions in Composites -- 2.5.2 Optimization of Curing Conditions -- References -- 3: Flame-Retardancy Characterization of Polymer Nanocomposites -- 3.1 Introduction -- 3.2 Types of Flame-Retardant Nanoadditives -- 3.2.1 One-Dimensional Nanomaterials -- 3.2.1.1 Montmorillonite Clay -- 3.2.1.2 Nanographene Platelets -- 3.2.2 Two-Dimensional Nanomaterials -- 3.2.2.1 Carbon Nanofibers -- 3.2.2.2 Carbon Nanotubes -- 3.2.2.3 Halloysite Nanotubes -- 3.2.3 Three-Dimensional Nanomaterials -- 3.2.3.1 Nanosilica -- 3.2.3.2 Nanoalumina -- 3.2.3.3 Nanomagnesium Hydroxide -- 3.2.3.4 Polyhedral Oligomeric Silsequioxanes -- 3.3 Thermal, Flammability, and Smoke Characterization Techniques -- 3.3.1 Introduction to Test Methods -- 3.3.2 Thermogravimetric Analysis (TGA) -- 3.3.3 The UL 94 Vertical Flame Test -- 3.3.4 Oxygen Index (Limiting Oxygen Index) (ASTM D2863-97).

3.3.5 Cone Calorimeter (ASTM E 1354) -- 3.3.6 Microscale Combustion Calorimeter (ASTM D 7309) -- 3.3.7 Steiner Tunnel Test (ASTM E 84) -- 3.4 Thermal and Flame Retardancy of Polymer Nanocomposites -- 3.4.1 One-Dimensional Nanomaterial-Based Nanocomposites -- 3.4.1.1 Polymer-Clay Nanocomposites -- 3.4.1.2 Polymer-Graphene Nanocomposites -- 3.4.2 Two-Dimensional Nanomaterial-Based Nanocomposites -- 3.4.2.1 Polymer Carbon Nanofiber Nanocomposites -- 3.4.2.2 Polymer Carbon Nanotube Nanocomposites -- 3.4.2.3 Polymer Halloysite Nanotube Nanocomposites -- 3.4.3 Three-Dimensional Nanomaterial-Based Nanocomposites -- 3.4.3.1 Polymer Nanosilica Nanocomposites -- 3.4.3.2 Polymer Nanoalumina Nanocomposites -- 3.4.3.3 Polymer Nanomagnesium Hydroxide Nanocomposites -- 3.4.3.4 Polymer POSS Nanocomposites -- 3.4.4 Multicomponent FR Systems: Polymer Nanocomposites Combined with Additional Materials -- 3.4.4.1 Polymer-Clay with Conventional FR Additive Nanocomposites -- 3.4.4.2 Polymer-Carbon Nanotubes with Conventional FR Additive Nanocomposites -- 3.4.4.3 Polymer-Clay and -Carbon Nanotubes with Conventional FR Additive Nanocomposites -- 3.5 Flame Retardant Mechanisms of Polymer Nanocomposites -- 3.6 Concluding Remarks and Trends of Polymer Nanocomposites -- Acknowledgments -- References -- 4: PVT Characterization of Polymeric Nanocomposites -- 4.1 Introduction -- 4.2 Components of Polymeric Nanocomposites -- 4.2.1 Size, Size Distribution, and Shape of the Clay Platelets -- 4.2.2 Chemical Composition of Clays -- 4.2.3 Impurities -- 4.3 Pressure-Volume-Temperature (PVT) Measurements -- 4.3.1 Transitions -- 4.3.2 Determination of PVT -- 4.3.3 Effects of Clay, Intercalant, and Compatibilizer -- 4.4 Derivatives, Compressibility, and Thermal Expansion Coefficient -- 4.4.1 Interpolating the Data.

4.4.2 Computation of the Thermal Expansion and Compressibility Coefficients, α and κ -- 4.4.3 Polymer α and κ from PVT -- 4.4.4 Effect of Clay on α and κ in PS-Based PNC -- 4.4.5 Effect of Clay on α and κ in PA-6 Based PNC -- 4.5 Thermodynamic Theories -- 4.5.1 Simha-Somcynsky Cell-Hole Theory -- 4.5.2 Simha-Somcynsky eos for Multicomponent Systems -- 4.5.3 The Vitreous Region -- 4.5.4 Equation of State for Semicrystalline PNC -- 4.6 Thermodynamic Interaction Coefficients -- 4.7 Theoretical Predictions -- 4.8 Summary and Conclusions -- 4.8.1 Characterization of Clays -- 4.8.2 PVT Measurements -- 4.8.3 Derivative Properties -- 4.8.4 Thermodynamic Theories -- 4.8.5 Interaction Parameters -- 4.8.6 Theoretical Predictions -- References -- 5: Following the Nanocomposites Synthesis by Raman Spectroscopy and X-Ray Photoelectron Spectroscopy (XPS) -- 5.1 Nanocomposites Based on POSS and Polymer Matrix -- 5.1.1 Introduction -- 5.1.2 Raman Spectroscopy Applied for Following the Synthesis of Nanocomposites Based on Polymer Matrix and POSS -- 5.1.3 XPS Applied for Characterization of Polymer-POSS Nanocomposites -- 5.1.3.1 Analysis of Functionalized POSS Molecules -- 5.1.3.2 Characterization of Nanocomposite Materials -- 5.1.4 Conclusions -- 5.2 Raman and XPS Applied in Synthesis of Nanocomposites Based on Carbon Nanotubes and Polymers -- 5.2.1 Introduction -- 5.2.2 X-Ray Photoelectron Spectroscopy (XPS) Used to Monitorize the Synthesis of Polymer-CNT-Based Nanocomposites -- 5.2.2.1 CNT Functionalization with Carboxylic Groups -- 5.2.2.2 CNT Functionalization with Amines -- 5.2.2.3 CNT Functionalization with Bioconjugated Systems Based on Dendritic Polymers and Antitumoral Drug -- 5.2.3 Polymer-CNT-Based Nanocomposites Synthesis Followed by Raman Spectroscopy -- 5.2.4 Conclusions -- Acknowledgments -- References.

6: Tribological Characterization of Polymer Nanocomposites -- 6.1 Introduction -- 6.2 Tribological Fundamentals -- 6.2.1 Tribological System -- 6.2.2 Wear Mechanisms -- 6.2.3 Transfer Film Formation -- 6.2.4 Temperature Increase -- 6.3 Wear Experiments -- 6.3.1 Selected Wear Models -- 6.3.2 Characteristic Values of Tribological Systems -- 6.3.2.1 Wear Rate -- 6.4 Selection Criteria -- 6.5 Design of Polymer Nanocomposites and Multiscale Composites -- 6.6 Selected Experimental Results -- 6.6.1 Particulate Fillers -- 6.6.2 Short Fibers -- 6.6.3 Combination of Fillers -- 6.6.3.1 Internal Lubricants and Short Carbon Fibers -- 6.6.3.2 Short Carbon Fibers and Nanoparticles -- 6.6.4 Wear Mechanisms -- 6.6.4.1 Ball Bearing ("Rolling") Effect on a Submicro Scale -- 6.6.5 Summary -- References -- 7: Dielectric Relaxation Spectroscopy for Polymer Nanocomposites -- 7.1 Introduction -- 7.2 Theory of Dielectric Relaxation Spectroscopy -- 7.2.1 Dielectric Relaxations in Polymer Nanocomposites -- 7.2.2 Fitting to Experimental Data -- 7.2.3 Activation Energy of the Relaxation Process -- 7.2.4 Modulus Formalism -- 7.3 PVDF/Clay Nanocomposites -- 7.3.1 Frequency Dependence of Dielectric Permittivity -- 7.3.2 Vo-Shi Model Fitting to Dielectric Permittivity -- 7.3.3 Role of Interface -- 7.3.4 Frequency Dependence of Dielectric Relaxation Spectra -- 7.4 PVDF/BaTiO3 Nanocomposites -- 7.4.1 Frequency Dependence of Dielectric Relaxation Spectra -- 7.4.2 Electric Modulus Presentation of Dielectric Relaxation Spectra -- 7.4.3 Activation Energy of Crystalline and MWS Relaxation Processes -- 7.5 PVDF/Fe3O4 Nanocomposites -- 7.5.1 Low-Temperature Dielectric Relaxation Spectra -- 7.5.2 Activation Energy of Glass Transition Relaxation -- 7.5.3 Normalized Spectra of Dielectric Relaxation -- 7.6 Comparative Analysis of PVDF Nanocomposites -- 7.7 Conclusions -- Acknowledgment.

Nomenclature -- References -- 8: AFM Characterization of Polymer Nanocomposites -- 8.1 Atomic Force Microscope (AFM) -- 8.1.1 Principle of AFM -- 8.1.2 Principle of Tapping Mode AFM -- 8.1.3 Phase and Energy Dissipation -- 8.2 Elasticity Measured by AFM -- 8.2.1 Sample Deformation -- 8.2.2 Contact Mechanics -- 8.2.3 Sneddon's Elastic Contact -- 8.2.4 Nanopalpation Realized by AFM -- 8.2.5 Adhesive Contact -- 8.2.6 Nanomechanical Mapping -- 8.3 Example Studies -- 8.3.1 Carbon Nanotubes-Reinforced Elastomer Nanocomposites -- 8.3.2 Investigation of the Reactive Polymer-Polymer Interface -- 8.3.3 Nanomechanical Properties of Block Copolymers -- 8.4 Conclusion -- References -- 9: Electron Paramagnetic Resonance and Solid-State NMR Studies of the Surfactant Interphase in Polymer-Clay Nanocomposites -- 9.1 Introduction -- 9.2 NMR, EPR, and Spin Labeling Techniques -- 9.2.1 Solid-State NMR Spectroscopy -- 9.2.2 EPR Spectroscopy -- 9.2.3 Spin Label EPR -- 9.2.4 Spin Labeling of the Surfactant Interphase -- 9.3 Characterization of Organically Modified Layered Silicates -- 9.3.1 Heterogeneity of Organoclays -- 9.3.2 Heterogeneity and Position Dependence of Surfactant Dynamics -- 9.3.3 Further Features of Surfactant Dynamics -- 9.3.4 Structural Aspects of the Surfactant Layer -- 9.4 Characterization of Nanocomposites -- 9.4.1 Intercalated Nanocomposites and Nonintercalated Composites -- 9.4.2 Influence of the Polymer on Surfactant Dynamics -- 9.4.3 Influence of the Polymer on Surfactant Layer Structure -- 9.5: Conclusion -- Acknowledgments -- References -- 10: Characterization of Rheological Properties of Polymer Nanocomposites -- 10.1 Introduction -- 10.2 Fundamental Rheological Theory for Studying Polymer Nanocomposites -- 10.3 Characterization of Rheological Properties of Polymer Nanocomposites -- 10.4 Conclusions -- References.

11: Segmental Dynamics of Polymers in Polymer/Clay Nanocomposites Studied by Spin-Labeling ESR.
Abstract:
With its focus on the characterization of nanocomposites using such techniques as x-ray diffraction and spectrometry, light and electron microscopy, thermogravimetric analysis, as well as nuclear magnetic resonance and mass spectroscopy, this book helps to correctly interpret the recorded data. Each chapter introduces a particular characterization method, along with its foundations, and makes the user aware of its benefits, but also of its drawbacks. As a result, the reader will be able to reliably predict the microstructure of the synthesized polymer nanocomposite and its thermal and mechanical properties, and so assess its suitability for a particular application. Belongs on the shelf of every product engineer.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: