Cover image for Photonics, Volume 2 : Nanophotonic Structures and Materials.
Photonics, Volume 2 : Nanophotonic Structures and Materials.
Title:
Photonics, Volume 2 : Nanophotonic Structures and Materials.
Author:
Andrews, David L.
ISBN:
9781119014010
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (459 pages)
Series:
A Wiley-Science Wise Co-Publication
Contents:
Photonics -- Contents -- List of Contributors -- Preface -- 1 Silicon Photonics -- 1.1 Introduction -- 1.2 Applications -- 1.2.1 Interconnects -- 1.2.2 Sensors and Spectroscopy -- 1.3 Optical Functions -- 1.3.1 Waveguides and Routing -- 1.3.2 Wavelength Filtering -- 1.3.3 Coupling to Fiber -- 1.3.4 Electro-Optic and Opto-Electronic Conversion -- 1.3.5 Lasers -- 1.4 Silicon Photonics Technology -- 1.4.1 Passive Circuits -- 1.4.2 Modulators -- 1.4.3 Active Tuning -- 1.4.4 Photodetectors -- 1.4.5 Lasers -- 1.4.6 Photonic-Electronic Integration -- 1.5 Conclusion -- References -- 2 Cavity Photonics -- 2.1 Introduction -- 2.2 Cavity fundamentals -- 2.3 Cavity-Based Switches -- 2.4 Emitters in Cavities -- 2.4.1 Weak Coupling: The Purcell Effect -- 2.4.2 Strong Coupling: Vacuum Rabi Oscillations -- 2.5 Nanocavity Lasers and LEDs -- 2.6 Summary -- Acknowledgments -- References -- 3 Metamaterials: State-of-the Art and Future Directions -- 3.1 Introduction -- 3.2 Negative-Index Materials -- 3.3 Magnetic Metamaterials -- 3.4 Graded-Index Transition Metamaterials -- 3.5 Transformation Optics -- 3.6 Metasurfaces -- References -- 4 Quantum Nanoplasmonics -- 4.1 Introduction -- 4.2 Spaser and Nanoplasmonics with Gain -- 4.2.1 Introduction to Spasers and Spasing -- 4.2.2 Spaser Fundamentals -- 4.2.3 Brief Overview of Latest Progress in Spasers -- 4.2.4 Equations of Spaser -- 4.2.5 Spaser in CW Regime -- 4.2.6 Spaser as Ultrafast Quantum Nanoamplifier -- 4.2.7 Compensation of Loss by Gain and Spasing -- 4.2.8 Conditions of Loss Compensation by Gain and Spasing -- 4.3 Adiabatic Hot-Electron Nanoscopy -- 4.3.1 Introduction to Adiabatic Hot-Electron Nanoscopy -- 4.3.2 Adiabatic Concentration of Optical Energy and Hot Electrons -- 4.3.3 Adiabatic Hot-Electron Nanoscope -- Acknowledgments -- References -- 5 Dielectric Photonic Crystals -- 5.1 Introduction.

5.2 Fundamentals -- 5.2.1 Analogies -- 5.2.2 1D PCs -- 5.2.3 2D and 3D PCs -- 5.2.4 Group Velocity Effects -- 5.3 Fabrication Methods and Materials -- 5.3.1 Microfabrication Techniques -- 5.3.2 Other Physical Techniques -- 5.3.3 Chemical Techniques -- 5.3.4 Lithography Techniques -- 5.3.5 Other Types of PCs -- 5.4 Applications -- 5.4.1 Fundamental Effects -- 5.4.2 Lasers -- 5.4.3 Sensors -- 5.4.4 Add/Drop Filters -- 5.4.5 Directional Couplers -- 5.4.6 PC Fibers -- 5.5 Conclusions -- References -- 6 Quantum Dots -- 6.1 Introduction -- 6.1.1 Infrared Detection Basics -- 6.2 Quantum Dots for Infrared Detection -- 6.2.1 Benefits of Quantum Dots for Intersubband Detectors -- 6.2.2 The Potential of QDIPs -- 6.3 Quantum Dot Growth -- 6.3.1 The Formation of Quantum Dots in the SK Growth Mode -- 6.3.2 Properties of SK Grown Dots and Their Effect on QDIP Performance -- 6.4 Device Fabrication and Measurement Procedures -- 6.5 Gallium Arsenide-Based Quantum Dot Detectors -- 6.5.1 InGaAs/InGaP QDIP -- 6.5.2 First QDIP FPA -- 6.5.3 Two Temperature Barrier Growth for Morphology Improvement -- 6.6 Indium Phosphide-Based Quantum Dot Detectors -- 6.6.1 InAs/InP QDIP -- 6.6.2 Detection Wavelength Tuning Using Quantum Dot Engineering -- 6.6.3 High Operating Temperature Quantum Dot Detector and Focal Plane Array -- 6.6.4 High Operating Temperature FPA -- 6.7 Colloidal Quantum Dots -- 6.8 Conclusion -- References -- 7 Magnetic Control of Spin in Molecular Photonics -- 7.1 Introduction -- 7.2 A Survey of the Magneto-Electroluminescence in OLEDs -- 7.2.1 Early Organic-MEL Studies: Small Molecule (Alq3) and -Conjugated Polymer (Polyfluorene) -- 7.2.2 Isotope Effect in MEL: the Case of Poly(Dioctyloxy) Phenyl Vinylene (DOOPPV) -- 7.2.3 Isotope Effect in MEL: The Case of Alq3 -- 7.3 Organic MEL at Small Magnetic Fields -- Compass Effect.

7.4 Magnetic Field Effect on Excited State Spectroscopies in Organic Semiconductor Films -- 7.4.1 MPA of PP and TE in the MEH-PPV System -- 7.4.2 Magnetic Field Effect Spectroscopy of C60-Based Films -- 7.5 Basic Quantum Mechanical Models Based on Spin-Mixing Manipulation by Magnetic Fields -- 7.5.1 Few Spin Quantum Mechanical Approach -- 7.5.2 Triplet Mechanism: Spin-Dependent Recombination -- 7.5.3 Triplet Mechanism: Triplet-Triplet Annihilation -- 7.6 Summary -- Acknowledgments -- References -- 8 Thin-Film Molecular Nanophotonics -- 8.1 Introduction -- 8.2 Molecular Assembling for Nanoscale Tailored Structures -- 8.2.1 Static Molecular Assembling -- 8.2.2 Dynamic Molecular Assembling -- 8.3 Molecular Layer Deposition -- 8.4 Organic Multiple Quantum dots (MQDs) -- 8.4.1 Polymer MQDs -- 8.4.2 Molecular MQDs -- 8.5 Self-Organized Lightwave Network -- 8.5.1 Concept -- 8.5.2 Theoretical Analysis -- 8.5.3 Experimental Demonstrations: Targeting Reflective/Luminescent Sites -- 8.6 Proposed Applications -- 8.6.1 Sensitized Solar Cells -- 8.6.2 Three-Dimensional Integrated Optical Interconnects within Computers -- 8.6.3 Electro-Optic (EO) Thin Films -- 8.6.4 Cancer Therapy -- 8.6.5 Molecular Circuits -- 8.7 Summary -- References -- 9 Light-Harvesting Materials for Organic Electronics -- 9.1 Introduction -- 9.2 Photoinduced Electron Transfer (PET) in Artificial Photosynthetic Systems -- 9.2.1 Covalent and Supramolecular Porphyrin-Fullerene Systems -- 9.2.2 Covalent and Supramolecular TTF-Fullerene Systems -- 9.2.3 Covalent and Supramolecular Phthalocyanine-Fullerene Systems -- 9.2.4 Covalent Cyanine-Fullerene Systems -- 9.2.5 Covalent and Supramolecular BODIPY-Fullerene Systems -- 9.3 Fullerenes for Organic Photovoltaics -- 9.4 Molecular Wires -- 9.4.1 Covalent Donor-Bridge-Acceptor Systems -- 9.4.2 Supramolecular Donor-Bridge-Acceptor Systems.

9.5 Conclusions -- Acknowledgments -- References -- 10 Recent Advances in Metal Oxide-Based Photoelectrochemical Hydrogen Production -- 10.1 Introduction -- 10.1.1 Motivation -- 10.1.2 Description of PEC Hydrogen Generation -- 10.2 Materials for PEC Hydrogen Production -- 10.2.1 Metal Oxides for PEC Water Splitting -- 10.2.2 Composite Materials for PEC Water Splitting -- 10.2.3 Nanostructured Photoanodes -- 10.2.4 Doped Metal Oxides -- 10.3 Conclusion -- References -- 11 Optical Control of Cold Atoms and Artificial Electromagnetism -- 11.1 Introduction -- 11.2 Atomic Bose-Einstein Condensates -- 11.2.1 The Description of a Condensate -- 11.3 Optical Forces on Atoms -- 11.3.1 Artificial Magnetic Field and Gauge Potentials for Ultracold Atoms -- 11.3.2 Setup for Creating Abelian Gauge Potentials -- 11.3.3 Tripod Scheme for Creating Non-Abelian Gauge Potentials -- 11.3.4 Concluding Remarks -- References -- Index -- Supplemental Images -- EULA.
Abstract:
Discusses the basic physical principles underlying the science and technology of nanophotonics, its materials and structures This volume presents nanophotonic structures and Materials. Nanophotonics is photonic science and technology that utilizes light/matter interactions on the nanoscale where researchers are discovering new phenomena and developing techniques that go well beyond what is possible with conventional photonics and electronics.The topics discussed in this volume are: Cavity Photonics; Cold Atoms and Bose-Einstein Condensates; Displays; E-paper; Graphene; Integrated Photonics; Liquid Crystals; Metamaterials; Micro-and Nanostructure Fabrication; Nanomaterials; Nanotubes; Plasmonics; Quantum Dots; Spintronics; Thin Film Optics Comprehensive and accessible coverage of the whole of modern photonics Emphasizes processes and applications that specifically exploit photon attributes of light Deals with the rapidly advancing area of modern optics Chapters are written by top scientists in their field Written for the graduate level student in physical sciences; Industrial and academic researchers in photonics, graduate students in the area; College lecturers, educators, policymakers, consultants, Scientific and technical libraries, government laboratories, NIH.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: