Cover image for Redox Biochemistry.
Redox Biochemistry.
Title:
Redox Biochemistry.
Author:
Becker, Donald.
ISBN:
9780470177327
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (339 pages)
Contents:
REDOX BIOCHEMISTRY -- CONTENTS -- Contributors -- List of Abbreviations -- Preface -- 1. Redox Metabolism and Life -- 1.1. Redox Biochemistry and the Evolution of Life -- 1.2. Global Redox Cycles -- 1.3. Major Bioenergetic Cycles -- 1.3.A. Photosynthesis -- 1.3.B. Aerobic Respiration -- 2. Antioxidant Molecules and Redox Cofactors -- 2.1. Glutathione -- 2.1.A. Biological Functions -- 2.1.B. Biosynthesis -- 2.1.C. Degradation -- 2.1.D. Other Thiol-Based Redox Buffers -- 2.2. Ascorbate -- 2.2.A. Ascorbate Chemistry -- 2.2.B. Ascorbate Biosynthesis -- 2.2.C. Ascorbate Recycling -- 2.2.D. Ascorbate Transport -- 2.2.E. Importance of Ascorbate in Stress and Disease -- 2.3. Other Antioxidants -- 2.3.A. Lipid-Soluble Antioxidants -- 2.3.B. Water-Soluble Antioxidants -- 2.3.C. Antioxidants and Human Health -- 2.4. Redox Coenzymes -- 2.4.A. Flavin -- 2.4.B. NAD -- 2.4.C. Quinones -- 2.4.D. Pterins and Molybdopterins -- 2.4.E. Folic Acid -- 3. Antioxidant Enzymes -- 3.1. ROS-Dependent Enzymes -- 3.1.A. Catalase -- 3.1.B. Superoxide Dismutase -- 3.1.C. Peroxiredoxins -- 3.1.D. Alkyl Hydroperoxide Reductases -- 3.2. The Thioredoxin System -- 3.2.A. Thioredoxin -- 3.2.B. Thioredoxin Reductase -- 3.3. The Glutathione System -- 3.3.A. Glutathione Reductase -- 3.3.B. Glutaredoxin (Thioltransferase) -- 3.4. Repair Enzymes -- 3.4.A. Methionine Sulfoxide Reductases -- 3.4.B. DNA Repair Enzymes -- 3.4.C. Sulfiredoxins -- 3.5. Detoxification Enzymes -- 3.5.A. Cytochrome P450 Enzymes: Structure, Function, and Mechanism -- 3.5.B. GSH Transferases -- 3.6. Oxidative Folding -- 3.6.A. Disulfide Bond Formation in Bacteria -- 3.6.B. Disulfide Bond Formation in Eukaryotes -- 3.7. Other Antioxidant Enzymes -- 3.7.A. Selenoproteins -- 3.7.B. Heme Oxygenase -- 4. Redox Regulation of Physiological Processes -- 4.1. Reactive Oxygen, Nitrogen, and Thiol-Based Signal Transduction.

4.1.A. Nitric Oxide Signaling -- 4.1.B. Carbon Monoxide Signaling -- 4.1.C. Superoxide and Hydrogen Peroxide -- 4.1.D. Other Novel Redox Molecules -- 4.2. Role of Nitric Oxide Synthases in Redox Signaling -- 4.2.A. Characterization of the Nitric Oxide Synthases -- 4.2.B. Regulation of Nitric Oxide Synthases by Intrinsic Elements -- 4.2.C. Extrinsic Regulation of Nitric Oxide Synthases -- 4.2.D. Interactions of NO with Other Proteins and Enzymes -- 4.3. Redox Regulation of Genes -- 4.3.A. MAP Kinase/Cell Cycle -- 4.3.B. Redox Control of Gene Expression -- 4.3.C. Peptide Editing and Thiol-Mediated Redox Regulation -- 4.4. Redox Regulation of Apoptosis -- 4.4.A. Apoptotic Pathways -- 4.4.B. Reactive Oxygen Species and Apoptosis -- 4.5. Metal Homeostasis -- 4.5.A. Physiological Significance of Metal Metabolism -- 4.5.B. Metal Uptake from the Extracellular Environment -- 4.5.C. Intracellular Metal Distribution by Target-Specific Chaperones -- 4.5.D. Subcellular Membrane Metal Transporters -- 4.5.E. Heme and Iron-Sulfur Cluster Synthesis -- 4.5.F. Cellular Storage -- 4.5.G. Metal Export -- 4.5.H. Regulation of Metal Metabolism -- 4.5.I. Genetic Disorders in Metal Metabolism -- 4.5.J. Perturbation of Metal Homeostasis and Degenerative Disorders -- 4.6. Redox Enzymology -- 4.7. Circadian Clock and Heme Biosynthesis -- 4.7.A. Cyclic Expression of Heme Binding Proteins -- 4.7.B. Circadian Clock Mechanism -- 4.7.C. PAS Is a Heme Binding Domain -- 4.7.D. Expression of Npas2 Is Controlled by mPER2 -- 4.7.E. NPAS2 Regulates Expression of Aminolevulinate Synthase 1 -- 5. Pathological Processes Related to Redox -- 5.1. Protein Modification -- 5.1.A. Protein Oxidation and Aging -- 5.1.B. Mechanisms of Protein Oxidation -- 5.1.C. Peptide Bond Cleavage -- 5.1.D. Oxidation of Amino Acid Residue Side Chains -- 5.1.E. Beta Scission of Amino Acid Side Chains.

5.1.F. Generation of Protein Carbonyl Derivatives -- 5.1.G. Formation of Protein Cross-Linked Derivatives -- 5.1.H. Role of Protein Oxidation in Aging -- 5.2. Oxidative Stress in the Eye: Age-Related Cataract and Retinal Degeneration -- 5.2.A. Oxidative Stress and Cataract -- 5.2.B. Oxidative Stress and Retinal Pathology -- 5.3. Redox Mechanisms in Cardiovascular Disease: Chronic Heart Failure -- 5.3.A. Excitation-Contraction Coupling in Cardiac Myocytes -- 5.3.B. Role of Oxidative Stress in Chronic Heart Failure -- 5.3.C. Redox Modulation of Ca(2+) Handling Proteins -- 5.3.D. Hypertrophy and Cell Death -- 5.3.E. Extracellular Matrix Remodeling -- 5.4. Role of Reactive Oxygen Species in Carcinogenesis -- 5.4.A. ROS Act as Growth Signaling Messengers -- 5.4.B. Phosphatases Are Prime Targets for ROS During Growth Stimulation -- 5.4.C. Uncontrolled Production of ROS is Carcinogenic -- 5.4.D. ROS Can Induce Carcinogenic DNA and Protein Adducts -- 5.4.E. ROS Can Affect DNA Methylation and Gene Expression -- 5.4.F. Mitochondrial DNA Mutations Are Induced by ROS -- 5.4.G. Clinical Trials on Antioxidant Supplementation Against Cancer -- 5.5. Oxidative Stress and the Host-Pathogen Interaction -- 5.5.A. Neutrophils and the Innate Immune Response -- 5.5.B. Bacterial Targets of Oxidative Damage -- 5.5.C. Regulating the Oxidative Stress Response -- 5.5.D. The Oxidative Stress Response -- 5.5.E. Evasion of the Innate Immune Response -- 6. Specialized Methods -- 6.1. Mass Spectrometry Applications for Redox Biology -- 6.1.A. Mass Spectrometer -- 6.1.B. Applications of Mass Spectrometry -- 6.1.C. Hydrogen Exchange Mass Spectrometry -- 6.2. Electron Paramagnetic Resonance (EPR) for the Redox Biochemist -- 6.2.A. Introduction to Magnetic Resonance Spectroscopy -- 6.2.B. Basic EPR Theory -- 6.2.C. Appearance of the EPR Spectrum -- 6.2.D. The EPR Experiment.

6.2.E. The Conventional EPR Spectrometer: Detection of the Signal -- 6.2.F. Sensitivity and Saturation in EPR -- 6.2.G. Measuring the Concentration of Spins -- 6.2.H. Nuclear Hyperfine and Spin-Spin Interactions -- 6.3. Redox Potentiometry -- 6.3.A. Midpoint Potential -- 6.3.B. Redox-Linked Processes -- 6.3.C. Potentiometric Technique -- 6.4. Bioinformatics Methods to Study Thiol-Based Oxidoreductases -- 6.4.A. Identification of Redox-Active Cysteines in Proteins -- 6.4.B. Cysteine-Based Redox Motifs -- 6.4.C. Conserved Cysteines in Metal-Binding Proteins -- 6.4.D. Secondary Structure Context of Redox-Active Cysteines -- 6.4.E. Structure Modeling -- 6.4.F. Comparative Sequence Analysis of Thiol-Based Oxidoreductases -- 6.5. Electrophysiology -- 6.5.A. Electrophysiology Part I: Ion Channel Physiology -- 6.5.B. Electrophysiology Part II -- 6.6. Methods to Detect Reactive Metabolites of Oxygen and Nitrogen -- 6.6.A. Detection of the Superoxide Anion Radical -- 6.6.B. Detection of Hydrogen Peroxide -- 6.6.C. F2-Isoprostanes as Indicators of Lipid Peroxidation In Vivo -- 6.6.D. Measurement of the GSSG/GSH Redox Couple in Cells and Tissue -- 6.6.E. Methods to Detect NO and Its Oxidized Metabolites In Vitro and In Vivo -- 6.6.F. Detection of S-Nitrosothiols by Colorimetric and Fluorimetric Methods -- 6.6.G. Is the Presence of 3-Nitrotyrosine a Specific Footprint for Peroxynitrite? -- Index.
Abstract:
Ruma Banerjee, PhD, is the Vincent Massey Collegiate Professor of Biological Chemistry at the University of Michigan, Ann Arbor. She was the founding director of the Nebraska Redox Biology Center. Dr. Banerjee has published over one hundred articles and several book chapters, and edited The Chemistry and Biochemistry of Vitamin B-12 (Wiley). Drs. Becker, Dickman, Gladyshev, and Ragsdale are the Associate Editors and were all members of the Redox Biology Center at the University of Nebraska when this book project began. Drs. Dickman and Ragsdale are currently at Texas A&M and the University of Michigan respectively.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: